• 제목/요약/키워드: Butyric Acid Bacterium

검색결과 13건 처리시간 0.027초

장내 항세균성 낙산균의 분리 및 특성 (Isolation and Characterization of a Butyric Acid Bacterium from Infant Feces)

  • 곽종휘;이정치;김태한;정필근;이금기
    • 한국미생물·생명공학회지
    • /
    • 제17권1호
    • /
    • pp.56-62
    • /
    • 1989
  • 유아 분변으로부터 장내 병원균인 Cl. perfringens ATCC 13124에 대하여 생육저해 작용을 가지는 낙산 생성균주 1D-1113을 분리하였다. 1D-113 균주는 Cl. butyricum으로 동정되었다. 임상적인 응용을 위하여 1D-113 균주의 포자형성과 포자의 성질을 조사하였다. SM배지에서 12시간 배양 후 포자를 형성하기 시작하여 36시간까지 포자를 형성하였으며, 이때 포자형성율은 95% 이상이었다. 또한 시판의 유포자성 낙산균과 유산균 정장제와 비교해 볼 때 제제화한 1D-113균주의 포자는 양호한 열내성, 보존성 및 내산성을 가지고 있었다.

  • PDF

Production of Auxins and Auxin-like Compounds by Ginseng Growth-promoting Bacterium Pseudomonas fluorescens KGPP 207

  • Ten, Leonid N.;Lee, Mi Ja;Lee, Mee-Kyoung;Park, Hoon;Yoon, Jong Hyuk
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.264-268
    • /
    • 2000
  • High activity of acidic ethylacetate extract from the culture supernatant of ginseng growth-promoting bacterium Pseudomonas fluorescens KGPP 207 and its fractions were demonstrated through wheat coleoptile bioassay. The following auxins and auxin-like compounds were identified in these fractions by combined gas chromatography-mass spectrometry: indole-3-acetic acid, indole-3-acetic acid methyl and ethyl ester, indole-3-butyric acid, indole-3-lactic acid and its methyl ester, indole-3-propionic acid, indole-3-pyruvic acid, p-hydroxyphenyl acetic acid, p-hydroxyphenyl acetic acid methyl and ethyl ester, phenyl acetic acid and its methyl ester. The bacterium KGPP 207 belongs to the strain of P. fluorescens which produces plant growth regulators and its beneficial effect on the ginseng growth may be due to the formation of the identified compounds.

  • PDF

바이오에너지 및 바이오화학원료인 C4-C6 생산 (Production of C4-C6 for Bioenergy and Biomaterials)

  • 김병천;이성철;상병인
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.447-452
    • /
    • 2011
  • 석유자원의 고갈이 에너지 및 화학원료물질로 재생 가능한 바이오매스의 이용성을 증가시키고 있다. 본 총설에서는 바이오에너지 및 바이오화학원료인 C4-C6 생산에 관해 논하고자 한다. 주요한 C4 물질인 n-butanol과 n-butyric acid를 다량 생산하는 미생물은 Clostridium tyrobutyricum, Clostridium beijerinckii, Clostridium acetobutylicum이다. 대표적인 C6 물질인 n-hexanoic acid는 Clostridium kluyveri와 Megasphaera elsdenii가 다량 생산한다. 미생물 발효에 의해 보고된 n-butanol, n-butyric acid, n-hexanoic acid의 최대 생산량은 각각 21, 55, 19 g/L이었다. 배양과정에서 이들 생산물의 제거는 최종산물억제의 감소로 미생물에 의한 n-butanol, n-butyric acid, n-hexanoic acid의 생산량을 증가시켰다. 특히 C6 물질인 n-hexanoic acid는 n-hexanol로 될 수 있는 고 부가가치 물질로 생물학적 생산 연구가 꾸준히 진행 중인데, 신규한 미생물인 Clostridium sp. BS1은 galactitol을 이용하여 5 g/L의 n-hexanoic acid를 생산하였다.

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater

  • Lee, Sung-Hun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1908-1914
    • /
    • 2008
  • An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).

국내 모유수유 유아의 분변에서 분리한 낙산균 Clostridium butyricum DIMO 52의 특징 (Characteristics of butyric acid bacterium, Clostridium butyricum DIMO 52, isolated from feces of Korean breastfeeding infants)

  • 모상준
    • 한국식품과학회지
    • /
    • 제53권6호
    • /
    • pp.775-784
    • /
    • 2021
  • Clostidium butyricum을 분리하기 위하여 국내 모유수유 신생아 분변으로부터 혐기성 균주를 선별하였고 버블을 생성하는 100개의 균을 확보하였다. 이중 Clostridium perfringens에 대한 항균력과 butyric acid의 생산이 가장 우수한 DIMO 52 균주를 선발하였고, 형태학적 특성, 생리 생화적 특성 및 16S rRNA 유전자 분석을 통하여 C. butyricum으로 동정되어 C. butyricum DIMO 52로 명명하였다. 성장률, butyric acid 생산 및 pH 변화를 배양 36시간 동안 모니터링하였다. 배양 24시간 후 DIMO 52 균주의 최대 성장에 도달하였고, butyric acid 최대 농도는 대략 34.73±4.27 mM이었으며, pH는 7.2에서 2.5로 변경되었다. DIMO 52 균주는 낮은 pH와 oxgall에 높은 저항성이 있다. pH 2에서 2시간 동안 접종의 약 67.5%의 유의성 있는 생존율을 보였다(p<0.05). 그리고, 0.3% oxgall이 함유된 RCM 액체배지에서 24시간 동안 접종의 약 64.9%의 유의성 있는 생존율을 보였다(p<0.05). 또한, DIMO 52은 Escherichia coli KCTC 2441와 Salmonella Typhimurium KCTC 1925에 대해 억제효과를 나타냈다. 두 균주에 대한 항균효과는 아마도 butyric acid에 의한 낮은 pH 때문인 것으로 보였다. 5×103 CFU/mL 생균수 까지는 RAW264.7 세포에 세포독성이 없는 것으로 관찰되었고, NO 생성을 억제할 수 있는 최저 균수를 확인한 결과 약 1×103 CFU/mL 생균수에서 LPS만 처리한 군 대비 약 33%의 NO 생성을 억제하는 것으로 분석되었다(p<0.01). 이 결과는 C. butyricum DIMO 52이 NO radical 소거 및 항염증 활성을 가지고 있음을 시사한다. 결론적으로, 본 연구에서 분리된 C. butyricum DIMO 52의 프로바이오틱스 특성을 확인하였다.

Infection Structures on the Infected Leaves of Potato Pre-inoculated with Bacterial Strains and DL-3-amino Butyric Acid after Challenge Inoculation with Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.203-209
    • /
    • 2007
  • Infection structures were observed using a fluorescence microscope at the penetration sites on the leaves of potato plants pre-inoculated with the bacterial strains Pseudomonas putida TRL2-3, Micrococcus luteus TRK2-2, and Flexibacteraceae bacterium MRL412, which mediated an induced systemic resistance on potato plants against late blight disease caused by Phytophthora infestans. In order to compare the infection structures on the leaves expressing systemic acquired resistance, the leaves of potato plants pre-treated with DL-3-amino butyric acid (BABA) were also observed after challenge inoculation with the same pathogen. The infection structures were investigated. The total number of germination and appressorium formation of P. infestans were counted. Furthermore, the frequencies of fluorescent epidermal cells at the penetration sites, which indicate a defense response of plant cell, were estimated. There were no differences on the germination rates of the fungal cysts among the untreated control, BABA pre-treated, and bacterial strains pre-inoculated plants. However, appressorium formation was slightly decreased on the leaves of BABA pre-treated plants compared to those of untreated as well as bacterial strains pre-inoculated plants. Furthermore, the frequencies of fluorescent cells of BABA pre-treated and bacterial strains pre-inoculated were higher than that of untreated plants, indicating an active defense reaction of the host cells against the fungal attack. On the other hand, the pre-treatment with BABA caused a stronger fluorescent of epidermal cells at the penetration sites compared to the pre-inoculation with the bacterial strains. Interestingly, the frequency of fluorescent cells by BABA, however, was lower than that by the bacterial strains. Based on the results it is suggested that the infection structures showing resistance reaction on the leaves of potato plants were different between by pre-inoculation with bacterial strains and by pre-treatment with BABA against the late blight pathogen.

음식물쓰레기의 생물학적 수소생산 및 미생물의 군집특성 (Characteristics of Microbial Community and Bio-hydrogen Production from Food Waste)

  • 최문수;이태진
    • 유기물자원화
    • /
    • 제20권4호
    • /
    • pp.86-96
    • /
    • 2012
  • 탄소원으로 자당을 공급한 합성폐수에 비해 상대적으로 발생수소량은 (7.56 mg $H_2/g$ COD) 적었지만 음식물쓰레기를 기질로 이용한 혐기적 발효공정에서 발생된 가스는 3.47 mg $H_2/g$ COD의 수소생성율을 나타내었다. 자당 합성폐수와 음식물쓰레기의 경우, 각각 8.01, 3.73의 B/A비를 보였으며 수소생성이 많은 경우 주요 유기산 중 Butyric acid가 많이 검출되었다. 동정분석 결과 주요 미생물 군집은 Escherichia 속, Klebsiella 속, Clostridium 속, Bacterium 속, 그리고 Enterobacter 속으로 분석되었다. Clostridium 속은 자당 합성폐수와 음식물 쓰레기 모두에서 관찰되었고 Klebsiella 속은 음식물 쓰레기의 발효과정에서 더욱 활발한 것으로 나타났다. 미생물의 분류학적 관계를 확인한 결과로 60%가 ${\gamma}-proteobacteria$이였으며 Firmicute와 Bacteria가 각각 20%를 차지하였다.

Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen $M^{(R)}$, Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP ($Forum^{(R)}$, Kyong nong) and phosphonic acid ($H_{3}PO_{3}$) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.

화학물질의 재현을 통한 악취발생원인 규명 (Investigation on the Cause of Malodor through the Reproduction of Chemicals)

  • 박상준;오영환;조보연;이재신;김의용
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Cometabolism of $\omega$-Phenylalkanoic Acids with Butyric Acid for Efficient Production of Aromatic Polyesters in Pseudomonas putida BM01

  • Song, Jae-Jun;Choi, Mun-Hwan;Yoon, Sung-Chul;Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.435-442
    • /
    • 2001
  • Poly(3-hydroxy-5-phenylvalerate) [P(3HPV)] was efficiently accumulated from 5-phenylvalerate (5PV) in Pseudomonas putida BM01 in a mineral salts medium containing butyric acid (BA) as the cosubstrate. A nove aromatic copolyester, poly(5 mol% 3-hydroxy-4-phenylbutyrate-co- 95 mol% 3-hydroxy-6-phenylhexanoate) [P(3HPB-co-3HPC)] was also synthesized from 6-phenylhexanoate (6PC) plus Ba. The two aromatic polymers, P(3HPV) and P(3HPB-co-3HPC), were found to be amorphous and showed different glass-transition temperatures at $15^{\circ}C$ and $10^{\circ}C$, respectively. When the bacterium was grown ina medium containing 20 mM 5PV as the sole carbon source for 140 h, 0.4 g/l of dry cells was obtained in a flask cultivation and 20 wt% of P(3HPV) homopolymer was accumulated in the cells. However, when it was grown with a mixture of 2 mM 5PV and 50 mM BA for 40 h, the yield of dry biomass was increased up to 2.5 g/l and the content of P(3HPV) in the dry cells was optimally 56 wt%. This efficient production of P(3HPV) homopolymer from the mixed substrate was feasible because BA only supported cell growth and did not induce any aliphatic PHA accumulation. The metabolites released into the PHA synthesis medium were analyzed using GC or GC/MS. Two $\beta$-oxidation derivatives, 3-phenylpropionic acid and trans-cinnamic acid, were found in the 5V-grown cell medium and these comprised 55-88 mol% of the 5PV consumed. In the 6PC-grown medium containing Ba, seven ${\beta}$-oxidation and related intermediates were found, which included phenylacetic acid, 4-phenylbutyric acid, cis-4-phenyl-2-butenoic acid, trans-4-phenyl-3-butenoic acid, trans-4-phenyl-2-butenoic acid, 3-hydroxy-4-phenylbutyric acid, and 3-hydroxy-6-phenylhexanoic acid. Accordingly, based on the metabolite analysis, PHA synthesis pathways from the two aromatic carbon sources are suggested.

  • PDF