• Title/Summary/Keyword: Bushing

Search Result 192, Processing Time 0.026 seconds

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

A Study on the on Line Monitoring Techniques of the Partial Discharge for Transformer (변압기 부분방전 상시 감시기법에 관한 연구)

  • 권동진;박재준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1032-1040
    • /
    • 2001
  • In order to apply the partial discharge measuring technique utilizing electrical pulse to the transformer at sites, this paper describes the measuring technique obtaining only the signals due to internal partial discharge in the transformer, but the noises due to external corona which has been a major problem so far. At first, partial discharge and corona noise were simultaneously generated in the model transformer by using needle-plane electrodes and rod-sphere electrodes out of it in a high voltage laboratory, respectively. It was verified that only the partial discharge signals in the transformer could be measured by removing the noise signals from the superposed signals of partial discharges and noises on the grounding wire of the model transformer. By application to a 345kV transformer in service, it was also confirmed that the partial discharge could be on-line monitored by removing the noise signals measured by the inductance sensor on the grounding wire of a 154kV lightning arrester from the superposed signals of internal partial discharge and external corona noise measured by bushing tap coupler of the transformer.

  • PDF

Impulse Tests for a Composite Solid Insulator for High Voltage Superconducting Power Applications (복합고체절연물의 극저온 절연성능 평가를 위한 임펄스 내전압시험)

  • Kim, W.S.;Ryu, S.D.;Hyun, O.B.;Kim, H.R.;Yim, S.W.;Yang, S.E.;Kim, H.S.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • High voltage insulation in cryogenic environment is one of big issues for development of superconducting power application, such as superconducting fault current limiter, transformer, transmission cable, and so on. We had proposed a composite solid insulator composed of plastics and polymer insulation sheets for a use of high voltage superconducting power applications. It is well known that the G10 FRP keeps its mechanical strength at very low temperature and the PPLP is very good insulator adopted as insulations for superconducting transmission cables. The composition of these two materials will show very good electrical and mechanical properties adequate for the insulation components of superconducting power applications, such as bushing, insulation barrier, and even for a cryostat. Dielectric strengths of prepared samples were measured at the temperature of boiling point of liquid nitrogen at atmospheric pressure, which will be presented in this paper to show a usefulness of this technique.

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

Consideration of Static-strain-dependent Dynamic Complex Modulus in Dynamic Stiffness Calculation of Viscoelastic Mount/Bushing by Commercial Finite Element Codes (점탄성 제진 요소의 복소동강성계수 산출을 위한 상용유한요소 코드 이용시 복소탄성계수의 정하중 의존성 반영 방법)

  • Kim, Kwang-Joon;Shin, Yun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.372-379
    • /
    • 2006
  • Little attention has been paid to static-strain-dependence of dynamic complex modulus of viscolelastic materials in computational analysisso far. Current commercial Finite Element Method (FEM) codes do not take such characteristics into consideration in constitutive equations of viscoelastic materials. Recent experimental observations that static-strain-dependence of dynamic complex modulus of viscolelastic materials, especially filled rubbers, are significant, however, require that solutions somehow are necessary. In this study, a simple technique of using a commercial FEM code, ABAQUS, is introduced, which seems to be far more cost/time saving than development of a new software with such capabilities. A static-strain-dependent correction factor is used to reflect the influence of static-strains in Merman model, which is currently the base of the ABAQUS. The proposed technique is applied to viscoelastic components of rather complicated shape to predict the dynamic stiffness under static-strain and the predictions are compared with experimental results.

Priliminary Numerical Simulation of the Torque Motor for a Servo Valve in the Fuel Supply System of APU (보조동력장치 연료 공급용 서보밸브 토크모터의 기초 수치모사 연구)

  • Chang, S.M.;Jeong, H.S.;Jang, G.W.;Yang, I.Y.;Lee, W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The APU(Auxiliary Power Unit) needs a set of complex pipeline for the fuel supply system where some of the main valves controlling the flow rate consist of the servo valve worked with a torque motor. The input electric current produces an induced magnetic field almost perpendicular to the background magnetic filed generated by fixed permanent magnets. The induced torque deforms the tubular bushing, and directly rotates an armature, which can open and close the valve. In this study, we start from a basic analytic model using a simple electro-magneto-statics, and expand our model to the three-dimensional one computationally applying a commercial code named COMSOL. The result is compared with each other, and reasonable numerical data are obtained for the dynamic behavior and multi-physics system.

  • PDF

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

22.9kV GIS Modeling and Transient Recovery Voltage Analysis Using EMTP/RV (EMTP/RV를 이용한 22.9kV GIS 모델링과 과도회복전압 해석)

  • Jyung, Tae-Young;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1199-1205
    • /
    • 2010
  • The recent power system is required to a large size of facilities and high power technology according to increasing power demand. However, it could lead to spoiling the beauty of city and environment problem. The miniaturized facilities with large capacity such as GIS have been required in recent power system. The GIS(Gas Insulated Substation) using the SF6 insulation gas enables to miniaturize facilities with large capacity with high insulation performance. However, the substation installed GIS has required to new design model which is different from the conventional substation. The TRV(Transient Recovery Voltage) analysis on simple circuit may applied by differential equation. However, in case of relatively complicated system, EMTP(Electro Magnetic Transients Program) mainly has been used to design and simulate for transient analysis. This paper mainly design the 22.9 kV GIS system and analyze the transient recovery voltage of main circuit breaker using EMTP/RV. It also enables to easily design the other substation installed GIS with same maker and voltage level because the proposed GIS model consists of separated modules such as busbar, circuit breaker, bushing, CT, PT etc. Eventually, it contributes to comfortably compare the interrupting performance of circuit breaker and system TRV corresponding to the substation system configuration.

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

The cause analysis of explosion on bushing of 154 kV cable (154 kV급 절연부싱에서의 폭발사고 원인분석)

  • Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Kim, Young-Seok;Choi, Myeong-Il
    • Congress of the korean instutite of fire investigation
    • /
    • 2011.04a
    • /
    • pp.137-160
    • /
    • 2011
  • 본 사고분석을 통해 154 kV 절연부싱에서의 폭발사고에 대한 원인을 규명하였다. 결과적으로, 절연부싱의 사양은 국제표준에 적합하였다. 사고당일 기록된 자료에 의하면 R상과 S상에서 거의 동시에 지락사고가 발생하였으며, 지락지속시간은 약 75 ms로써 사고의 영향을 준 시간은 약 67 ms인 것으로 나타났다. R상은 아크에 의한 탄화 흔적, S상은 아크에 의한 탄화흔적과 외부열에 의한 탄화흔적, T상은 외부열에 의한 탄화흔적, 용융흔적은 R상과 S상의 케이블접속부와 플랜지에서 각각 발생하였다. S상의 절연부싱을 이용하여 탄화패턴 중 아크에 의한 것과 일반 열에 의한 것을 분류하여 연면방전이 발생한 것을 입증하였다. 사고추정 시나리오는 현장조사과정에서 나타난 현상과 목격자 진술, 사고원인 분석자료 등을 토대로 하여 작성되었다. 따라서 사고추정을 통해 분석된 자료는 아크생성단계, 열폭주 단계, 폭발단계, 화재단계로 구성하였다. 사고원인 가능성은 사고의 원인, 형태, 영향을 통해 나타난 연결고리를 검토하여 가능성이 낮은 부분을 배제하는 방식으로 진행되었다. 절연부싱의 사고원인은 표면의 오염물질 부착 가능성이 가장 높았다. 이를 근거로 하여 제조, 시공, 관리적 측면에서의 방지대책을 고려하는 것이 바람직할 것으로 판단된다.

  • PDF