• Title/Summary/Keyword: Burning time

Search Result 346, Processing Time 0.094 seconds

Analysis of Cement Clinker Minerals According to Burning Conditions (광학현미경을 이용한 소성 조건별 시멘트 클링커 광물의 특성 변화)

  • Chu, Yong-Sik;Kim, In-Seob;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.819-825
    • /
    • 2004
  • The characteristic analysis of cement clinker using light microscope can evaluate not only the quality of cement but also making process. Thus this study analyzed clinkers having different burning conditions by reflective light microscope. As heating and cooling rates is decreased, alite and belite minerals grew and especially cooling rate had an effect on the growth of belite. Futhermore as the retention time in max. temperature got longer by twenty minutes, alite and belite minerals grew more about 5 $\mu\textrm{m}$. In the case of temperature 1400$^{\circ}C$ in max, the size of belite was suitable but alite was not suitable with the size of 10~15 $\mu\textrm{m}$.

Change of Surface Temperature in Woodceramics Made from MDF(I) -Effect of Density and Burning Temperature- (MDF로 제조된 우드세라믹의 표면온도변화(I) -밀도 및 소성온도의 영향-)

  • 오승원
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The following conclusions were obtained with measuring the surface temperature change of woodceramics which were made of MDF to identify usability of using them as a sub-material for heating system when installing Ondol heating floor. For this purpose, woodceramics were burned at the temperature of $650^{\circ}C$ and $800^{\circ}C$ 1. Surface temperature of woodceramics increased with the increase of density of woodceramics, but no significant difference was detected at the surface temperature when burning temperature was changed. 2. Surface temperature change under given temperature increased as time passed and it showed more increase in temperature at the burning temperature of 80$0^{\circ}C$. 3. Surface temperature change with the change in floor temperature increased u hen floor temperature increased and heating mechanism was fast with increase of measuring temperature.

  • PDF

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (I) (반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(I))

  • 김봉석
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • In the present study, the combustion characteristics of methane and hydrogen-supplemented methane as alternative fuels for automotive vehicles were investigated at various hydrogen substitution rate, ignition position and ignition methods in a CVCC. As a result, it is possible to decrease the total burning time and to obtain the reduction of NO concentration by using MSCDI device under the lean mixture conditions without deteriorating combustion characteristics such as combustion efficiency, maximum combustion pressure etc.. And by mixing hydrogen into methane, it was found that the reduction of the total burning time was obtained, in comparison with the use of methane only ; and at the same time, the combustion promotion rate was improved remarkably in comparison with the use of methane only.

A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines (점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF

Concentration Variations in Primary and Secondary Particulate Matter near a Major Road in Korea

  • Ghim, Young Sung;Won, Soo Ran;Choi, Yongjoo;Chang, Young-Soo;Jin, Hyoun Cher;Kim, Yong Pyo;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.32-41
    • /
    • 2016
  • Particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, $PM_{10}$ concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both $PM_{10}$ and $PM_{2.5}$ was significant due to high temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in $PM_{10}$ concentrations became smaller, and $PM_{2.5}$ concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in $PM_{10}$, as well as $PM_{2.5}$ in May.

Ash Drop Measuring on Tobacco Leaf Grades and Brand Cigarettes (잎담배 및 제품담배의 재떨어짐에 관한 연구)

  • Yang Burm-Ho;Ahn Dae-Jin;Jo Si-Hyung;Jeh Byong-Kwon;Kim Si-Mong;Kim Byeoung-Ku
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.2 s.52
    • /
    • pp.117-125
    • /
    • 2004
  • In this study, we have investigated the natural and puffing combustibility of cigarette brands and the compulsory ash-drop, and analysed factors related to the materials. Cigarette combustibility was greatly affected by the tobacco weight in cigarettes rod. Combustion rate of 4AOR cigarette made by flue-cured tobacco was 5.02 $^{mm}/_{min}\;and\;10\%$ faster than 1BO cigarette. Combustion pattern has interrelation with sugars, chlorine and ash contents among tobacco components. Combustion rate of 4DL, flue-cured tobacco was 55 seconds faster than 1CL tobacco extremely much in sugars contents, and ash drop was maintained at $21\%$ longer. Combustion time and burning rate were fast in cigarette made by expanded tobacco slice and tobacco stem and the formation of ash was poor. The length of puffed ash drop of expanded tobacco slice and tobacco stem were 18.6 mm and 25.2 mm and these forced ash drop length were 3.8 mm and 4.9 mm respectively. Puffed burning rate of general cigarette was $14.3\%$ faster than static burning rate and super slim type cigarettes was $21.3\%$ faster. Combustion rate and ash drop of domestic and foreign cigarette brands were quite different depending on tar level and cigarette types. The lower tar level, the faster combustion rate and the shorter ash drop.

Effects of Korean Medicine Therapies on Oral Pain in Patients with Burning Mouth Syndrome: a Before and After Study (구강작열감 증후군 환자의 구강내 통증에 대한 한방치료의 효과: 전.후 비교 연구)

  • Son, Ji-Young;Kim, Ju-Yeon;Kang, Kyung;Baek, Seung-Hwan;Choi, Jane;Jang, Seung-Won;Ryu, Bong-Ha;Kim, Jin-Sung
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.122-133
    • /
    • 2013
  • Objectives : Burning mouth syndrome (BMS) is characterized by chronic pain or a burning sensation in the mouth. There is limited evidence available to provide clear guidelines for treating BMS patients and a variety of different treatments have been used. This study was designed to investigate the Effects of Korean medicine therapies on oral pain in patients with BMS. Methods : We surveyed 30 BMS patients who newly visited the Oral Diseases Clinic in the Kyung Hee University Korean Medicine Hospital from February 2012 to March 2013. When the patients visited the clinic for the first time, they were evaluated on sociodemographic characteristics, BMS questionnaire, severity of pain using visual analogue scale (VAS) and pressure pain threshold (PPT) of the acupuncture point CV17. After 3 weeks of Korean medicine therapies (acupuncture, electroacupuncture, pharmacopuncture and herbal medicine), they were re-evaluated with the VAS and the PPT. Results : After 3 weeks of Korean medicine therapies, 30 patients' oral pain improved and the PPT score on CV17 rose, which means decrease of qi-stagnation score. Conclusions : Korean medicine therapies were effective on oral pain in patients with BMS. To confirm the additional curative effect and evaluate the efficacy of each treatment, well-designed randomized controlled trials will be needed in the future.