• Title/Summary/Keyword: Bulk diffusion

Search Result 186, Processing Time 0.024 seconds

Design Consideration of Bulk FinFETs with Locally-Separated-Channel Structures for Sub-50 nm DRAM Cell Transistors

  • Jung, Han-A-Reum;Park, Ki-Heung;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 2008
  • We proposed a new $p^+/n^+$ gate locally-separated-channel (LSC) bulk FinFET which has vertically formed oxide region in the center of fin body, and device characteristics were optimized and compared with that of normal channel (NC) FinFET. Key device characteristics were investigated by changing length of $n^+$ poly-Si gate ($L_s$), the material filling the trench, and the width and length of the trench at a given gate length ($L_g$). Using 3-dimensional simulations, we confirmed that short-channel effects were properly suppressed although the fin width was the same as that of NC device. The LSC device having the trench non-overlapped with the source/drain diffusion region showed excellent $I_{off}$ suitable for sub-50 nm DRAM cell transistors. Design of the LSC devices were performed to get reasonable $L_s/L_g$ and channel fin width ($W_{cfin}$) at given $L_gs$ of 30 nm, 40 nm, and 50 nm.

Thermal Properties and fracture Toughness of Difunctional Epoxy Resins Cured by Catalytic Initiators (촉매형 개시제로 경화된 이관능성 에폭시 수지의 열적 특성 및 파괴인성)

  • 박수진;허건영;이재락
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In this work, two thermal cationic latent catalysts, i.e., triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized. And the thermal and mechanical properties of difunctional epoxy (diglycidylether of bisphenol h, DGEBA) resins initiated by 1 phr of either TBPH or BMPH catalyst were investigated. As experimental results, the epoxy/TBPH system showed higher curing temperature and critical stress intensity factor ($K_{IC}$) than those of epoxy/BMPH. This could be interpreted in terms of slow thermal diffusion rate and bulk structure of four phenyl groups in TBPH. However, the decomposed activation energy determined from Coats-Redfern method was lower in the case of epoxy/TBPH. This result was probably due to the fact that broken short chain structure was developed by steric hindrance of TBPH.

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

An Amorphous Silicon Local Interconnection (ASLI) CMOS with Self-Aligned Source/Drain and Its Electrical Characteristics

  • Yoon, Yong-Sun;Baek, Kyu-Ha;Park, Jong-Moon;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.19 no.4
    • /
    • pp.402-413
    • /
    • 1997
  • A CMOS device which has an extended heavily-doped amorphous silicon source/drain layer on the field oxide and an amorphous silicon local interconnection (ASLI) layer in the self-aligned source/drain region has been studied. The ASLI layer has some important roles of the local interconnections from the extended source/drain to the bulk source/drain and the path of the dopant diffusion sources to the bulk. The junction depth and the area of the source/drain can be controlled easily by the ASLI layer thickness. The device in this paper not only has very small area of source/drain junctions, but has very shallow junction depths than those of the conventional CMOS device. An operating speed, however, is enhanced significantly compared with the conventional ones, because the junction capacitance of the source/drain is reduced remarkably due to the very small area of source/drain junctions. For a 71-stage unloaded CMOS ring oscillator, 128 ps/gate has been obtained at power supply voltage of 3.3V. Utilizing this proposed structure, a buried channel PMOS device for the deep submicron regime, known to be difficult to implement, can be fabricated easily.

  • PDF

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

Physical and Chemical Properties of Coal Fly Ash Ball Substrates, the Salt Accumulation and the Effects of Washing Out Salt with Water (석탄회성형배지(Ash Ball)의 이화학적 특성과 염류집적 및 제거효과)

  • Li, Xian-Ri
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.88-94
    • /
    • 2001
  • Physical and chemical properties, the salt accumulation and leaching of salt by water of coal fly ash ball (ash ball) were evaluated in comparison with perlite and granule rockwool (rockwool). Bulk density, particle density, solid phase, and porosity of ash ball were 0.93 g.cm$^{-3}$ , 2.29 g.cm$^{-3}$ , 40.6%, 59.4%, respectively. The bulk density of ash ball was greater, while porosity was smaller, than that of perlite and rockwool. Saturation moisture capacity was 52% in ash ball, 71% in perlite, and 90% in rockwool. Water contents after drainage for 1 hr of ash ball, perlite, and rockwool were 21%, 27%, and 80%, respectively. Water content of small granules (3-5 mm) of ash ball was 5% greater than that of large (7-15 mm) grannules. The ash ball was a weak alkali substrate with pH 7.6, but not electric conductivity (EC), of the nutrient solution supplied to ash ball slightly increased. When the absorption of mineral ions to substrates were analyzed, ash ball and RW absorbed mainly PO ̄$_4$. On tomato culture, salt accumulation in ash ball substrate was similar to that in perlite. Most of the salts in the ash balls were removed by submerging the substrate eight times in distilled water. It is concluded that water holding capacity of ash ball substrate was lo as compared to other substrates, but air permeability, and water diffusion was excellent, making control of medium water content easy.

  • PDF

Diffusion of Salt and Drying Characteristics of Beef Jerky (육포 제조시 염의 확산속도 및 건조 특성)

  • Lee Sin-Woo;Lee Bo-Su;Cha Woen-Suep;Park Joon-Hee;Oh Sang-Lyong;Cho Young-Je;Kim Jong-Kuk;Hong Joo-Heon;Lee Won-Young
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.508-515
    • /
    • 2004
  • In this study, salting conditions and dehydration methods were investigated. Salting time, concentration and temperature could be considered to variables in salting conditions. The diffused salt amounts to beef jerky depending on time are sharply increased in two hours. This result is caused by the difference decrease of concentration gradient between bulk solution and beef jerky. The increase of salting concentration and temperature resulted also in the increase of a diffused salt. The deeper bulk concentration made diffusion to beef easily with the bigger driving force and the movement of molecules is more active according to temperature increase. Dehydration is conducted with various methods such as natural drying, cold air drying and hot air drying. Comparing with color and texture among the drying methods, cold air drying showed superior quality in color and texture. Beef jerky by cold air drying colored more reddish than other drying methods and good cutting shear stress and tensile strength. In case of hardness and chewiness, hot air drying method showed the highest value, which means the worst texture.

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue;Feng, Nai-Xiang;Wang, Yao-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2483-2488
    • /
    • 2012
  • The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk;Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.862-868
    • /
    • 2012
  • Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF