• Title/Summary/Keyword: Building environment

검색결과 4,991건 처리시간 0.034초

학교시설 친환경인증 사례를 통한 에너지 평가항목에 대한 연구 (A Study on the Energy Level of Education Facilities in Green Building Certification Criteria)

  • 권영철;곽문근;최창호
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.688-694
    • /
    • 2009
  • With the increase in the demand for sustainable and environmentally-friendly development, Green Building Certification System came into force in 2002, Evaluation parts of Green Building Certification System are divided into land use and transportation, energy, ecological environment, and indoor environment. Alloted point for the part of energy is larger than other part, thus we can say that this part is very important to increase the green building performance. This study aims to analyze the present condition of design and construction for the part of energy in the certificated green school building. Total 40 certificated school buildings were selected and average scoring rate of each item was evaluated. Key particular to be considered were suggested to improve the item of energy consumption.

녹색건축물인증제도 개선방향에 관한 연구 -학교시설 용도구분 개선을 중심으로- (A study on the Improvement Plans for Green Building Certification System -focused on the school use classification-)

  • 이재옥;맹준호;이상민;이승민
    • 교육녹색환경연구
    • /
    • 제11권2호
    • /
    • pp.28-37
    • /
    • 2012
  • The purpose of this study is to suggest improvement plans of School Green Building Certification System by comparing items of domestic system with those of foreign system. Especially, we focused on school use classification. Use classification of Green Building Certification System must be based on Building Codes and reflect the nature of building use and size. Schools are divided into three groups ; preschool, school(elementary, junior high school, high school), university and ect. Also they must be set up assessment method reflecting the nature of school use and size.

아크릴 반구를 이용한 밀폐조건에 따른 재료별 열 이동특성 분석(II): 건축구조재 종류에 따른 비교 (Analysis of Heat Transfer Characteristics by Material Based on Closed Conditions Using Acrylic Hemispheres (II): Comparison by Type of Building Structural Materials)

  • YANG, Seung Min;KWON, Jun Hyuck;KIM, Phil Lip;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.710-721
    • /
    • 2020
  • 본 연구에서는 시멘트, 벽돌, 목재를 이용한 건축모형을 이용하여 직경 900 mm의 밀폐된 환경 속에서 3일간 온도와 상대습도 측정을 통하여 건축소재의 종류에 따른 실내 온도 환경에 미치는 영향과 열 이동 특성에 대해서 비교분석하였다. 건축모형 내부에 설치된 물은 실내에 있는 사람을 나타냈으며 사람에게 어떤 영향을 미치는지 평가하고자 사용되었다. 목조 건축모형은 시멘트, 벽돌 건축물 보다 보온성이 높아 열 손실이 가장 낮은 것으로 나타났다. 각각의 건축 모형의 열적 쾌적성은 온도와 상대습도를 이용하여 산출하였으며 목조 건축 모형은 시멘트, 벽돌 건축 모형보다 더 쾌적한 환경을 조성하는 결과를 도출하였다.

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

Improvement Directions for the G-SEED System from the Resident's Perspective - Focused on Certification Assessment Criteria for Apartment Buildings -

  • Choi, Yeo Jin;Lhee, Sang Choon
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.19-26
    • /
    • 2014
  • The building section is providing immediate causes for global climate change problems since it takes about 50% of carbon emission, 20~50% of waste discharge, 33% of energy consumption, 40% of resource use, and 17% of water consumption. So, many countries over the world have developed and implemented green building certification systems to assess sustainable performances of buildings since the early 1990s. In korea, the green building certification system to induce the diffusion of sustainable buildings was first introduced in 2002 and developed as an improved version of the G-SEED(Green Standard for Energy and Environmental Design) system in 2013 after major revisions of related legislations. This research conducts a survey targeting residents on an apartment building that was certified as green building and examines the importance of assessment criteria on apartment buildings to certify green buildings using the Analytic Hierarchy Process(AHP) method. And it proposes a new direction on certification assessment standards from the resident's prospective. As a result, assessment criteria such as indoor environment, ecological environment, energy & environment pollution, and maintenance management among 7 main ones turned out important on assessing the G-SEED system for apartment buildings, while criteria such as material & resource, water circulation management, and land use & transportation did relatively unimportant.

스마트 그린빌딩 구현을 위한 다기능 센서 통합 모듈 시스템 개발 (Development of Multi-function Sensor Integration Module System for Smart Green Building)

  • 김봉현
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4799-4804
    • /
    • 2013
  • 저탄소 녹색 환경 조성 및 성장을 위한 그린 IT 기술 개발은 미래형 신기술 분야이다. 따라서, 본 논문에서는 응용 RFID 모듈에 대한 보안 데이터를 생성하여 건물 환경에 대한 통합 감시 및 관리를 할 수 있는 스마트 그린빌딩 조성용 다기능 센서 통합 모듈 시스템을 개발하였다. 논문에서 구현한 다기능 센서 통합 모듈 시스템은 열 감지센서, 온도 감지센서, 스모그 감지센서, CO2 감지센서, O2 감지센서, 장력 감지센서 및 파손 감지센서를 통합 모듈로 개발하고 이를 실시간으로 모니터링 해줌으로써 건물 내부 환경에 대한 스마트 그린빌딩 환경을 구현할 수 있는 시스템을 설계, 개발하였다.

숯 첨가 콘크리트벽돌의 물성특성과 친환경 성능에 관한 연구 (A Study on the Properties and Friendly Environment Efficiency Charcoal Concrete Bricks)

  • 김영민;최희용;정유근;류현기
    • 한국건축시공학회지
    • /
    • 제6권1호
    • /
    • pp.123-130
    • /
    • 2006
  • After the new house symptoms recently, room environment pollution problem of building syndrome and so on is becoming research about ways to solve this being risen. Is taking advantage of nature data by building materials by one of this way, but Friendly Environmental performance examination for structure material is insufficient misgovernment being real condition that put emphasis in ability as most embellishment and in finish. Environmental examination is insufficient misgovernment on factor itself as structure material. Also, being real condition that radon that is responsible for lung cancer occurrence next to smoke in building materials such as concrete and so on is happened, the danger is reported much through mass communications and research paper etc. Therefore, this research measured radon release amount and the carbon dioxide adsorption rate for physical special quality measuring and Friendly Environment Efficiency that follow to 'KS F 4004 Concrete bricks' regulation after manufacture Concrete Bricks utilizing charcoal that is nature material by sand. This study finding carbon dioxide density appeared and displayed effect that charcoal Controls radon release that happen in Concrete Bricks to maximum 74% that decrease to best 95% though decreased the charcoal addition rate increases.

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구 (An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model)

  • 박승부;백종진
    • 한국대기환경학회지
    • /
    • 제23권2호
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.

데이터 웨어하우스 기술을 활용한 학교시설물의 환경개선예산 분석 - OO교육청 초·중·고등학교를 중심으로 - (Analysis of Environment Improving Budget of School Facilities by Using Data Warehouse Technology - Focused on Elementary, Middle, High School of OO Office of Education -)

  • 박민규;손창백;류한국
    • 교육녹색환경연구
    • /
    • 제13권1호
    • /
    • pp.15-23
    • /
    • 2014
  • With introduction of amended educational curriculum in 2007, optimizing project of educational environment to accomplish its purposes and goals includes expanding educational facilities and supplying eco-friendly school facilities. However, while the focus of optimizing project of educational environment is quality improvement of educational facilities, aging of these facilities built at th times of quantitative expansion and its management become serious problems. Higher concerns on studies and jobs on management of building caused by serious aging of facilities, management cost of building becomes a very crucial issue. Therefore, this study aims to analyze environment improvement budget of school facilities through building and using data warehouse, by investigating and analyzing the current status of environment improvement budget of school facilities and its cost through questionnaire and interview surveys on officers who are in charge of environment improvement budget of school facilities in educational administrations. This study thus analyzed environment improving budget of school facilities by using data warehouse technology collecting related data to the topic and setting levels by region, school class, establishment year, school facility types and others.