• 제목/요약/키워드: Building damages

검색결과 354건 처리시간 0.023초

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Intelligent Emergency Alarm System based on Multimedia IoT for Smart City

  • Kim, Shin;Yoon, Kyoungro
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.122-126
    • /
    • 2019
  • These-days technology related to IoT (Internet of Thing) is widely used and there are many types of smart system based IoT like smart health, smart building and so on. In smart health system, it is possible to check someone's health by analyzing data from wearable IoT device like smart watch. Smart building system aims to collect data from sensor such as humidity, temperature, human counter like that and control the building for energy efficiency, security, safety and so forth. Furthermore, smart city system can comprise several smart systems like smart building, smart health, smart mobility, smart energy and etc. In this paper, we propose multimedia IoT based intelligent emergency alarm system for smart city. In existing IoT based smart system, it communicates lightweight data like text data. In the past, due to network's limitations lightweight IoT protocol was proposed for communicating data between things but now network technology develops, problem which is to communicate heavy data is solving. The proposed system obtains video from IP cameras/CCTVs, analyses the video by exploiting AI algorithm for detecting emergencies and prevents them which cause damage or death. If emergency is detected, the proposed system sends warning message that emergency may occur to people or agencies. We built prototype of the intelligent emergency alarm system based on MQTT and assured that the system detected dangerous situation and sent alarm messages. From the test results, it is expected that the system can prevent damages of people, nature and save human life from emergency.

유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정 (Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix)

  • 나채국;김선필;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.

한국 서식 흰개미의 특성과 방제 (Characteristic of Termite inhabits in South Korea and the control)

  • 한성희;이규식;정용재
    • 보존과학연구
    • /
    • 통권19호
    • /
    • pp.133-158
    • /
    • 1998
  • There are about 2,000 species of termite in the World, but one species of termite inhabits in the southern part of Korean peninsula. Termites are social insects that live in colonies. The colonies are composed of king, queen, soldiers and workers. Termite food consists of cellulose obtained from wood. Protozoa in their digestive tracts convert the cellulose into usable food. Korean termite is a subspecies of Reticulitermes speratus Kolbe, Rhinotermitidae. It's subterranean termite and the scientic name is R. speratus kyushensis Morimoto. The subterranean termite must nest in the soil in order to survival, and infest soft-wood which contact with the soil near the nest. There are several ways which subterranean termite infestations can be noticed. Atcertain times of the year during daylight hours, king and queen termites emerge from the colonies. The propose of these flight is to establish new colonies. The termite is a decomposer of biological ecosystem, but an invader in the preservation of cultural properties as like wood buildings. There are serveral control methods for the prevention of wood building from termite's damages. Those are biological control, ecological control, physical control and chemical control. Ecological and Physical control are the best methods in the new constructing wood-building. Fumigation which is a method of chemical control, is the best method for the building damaged by the termite. After the fumigation, we have totake wood & soil treatments for the building and nearby in order not to be reinvaded by the termites.

  • PDF

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.

지진의 위험요인을 고려한 공동주택의 내진보강 우선순위 결정에 관한 연구 (A Study on Priority Determination of Seismic Reinforcement of Apartment Houses Considering Earthquake Risk Factors)

  • 한범진
    • 한국건축시공학회지
    • /
    • 제23권4호
    • /
    • pp.405-416
    • /
    • 2023
  • 최근 중국과 튀르키예에서 발생한 지진과 함께 세계 곳곳에서 지진으로 인한 피해가 발생하고 있으며, 그 피해의 정도 또한 매우 심각한 상황이다. 지진 활성단층에 위치한 우리나라도 더 이상 지진의 안전지대가 아니며, 지진에 대한 선제적 대응이 절대적으로 필요한 시점이다. 정부에서는 기존에 지어진 공공건축물에 대한 내진성능평가, 절차, 내진보강 방법 등을 마련하여 내진설계가 미흡한 시설물에 대한 내진보강을 추진하고 있다. 하지만 민간 소유의 아파트는 강제할 방법이 없고, 사전 연구와 가이드라인의 부족으로 국민 안전을 위한 선제적 조치가 매우 미흡한 실정이다. 국내 주거용 건축물의 약 48%가 30년 이상 된 노후 건축물이며, 그 중 공동주택은 80% 이상으로 그 심각성을 뒷받침하고 있다. 본 연구에서는 건축물의 내진설계 기준을 기반으로 지반 유형, 건물의 중요도, 노후도, 층수 등 공동주택의 내진보강을 위한 총 7개의 주요 영향 요인을 도출하고, 내진보강 우선순위를 보다 간결하고 효율적으로 결정할 수 있는 알고리즘을 제안하였다.

건축물 유형별 침수취약곡선 기반의 도시지역 침수피해액 산정기법 개발 (Development of Flood Damage Estimation Method for Urban Areas Based on Building Type-specific Flood Vulnerability Curves)

  • 장동민;박성원
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.149-160
    • /
    • 2024
  • 극한강우로 인한 도심지 침수피해는 극심한 인명 및 재산피해를 유발해왔으나 이를 대비하는 연구와 적절한 침수 피해 추정과 피해액의 산정 및 보상에 관한 연구가 미흡한 실정이다. 특히 미국이나 일본에서 적용되는 피해액 산정기법의 경우 재난 피해발생 양상이 국내와 큰 차이를 나타내기 때문에 국내 실정에 적합한 피해액 산정기법이 필요하다. 본 연구에서는 위와 같은 문제점에 착안하여 건물 특성별 최적화된 침수피해 추정기술 도출 방안을 마련하고 한국과학기술정보연구원(Korea Institute of Science and Technology Information, KISTI)에서 개발한 침수 예측 솔루션을 연계한 최적화된 침수피해액 추정기술 도출 방안을 마련하였다. 구조물 인벤토리별 침수취약곡선 추정방안을 적용하여 침수피해액을 산정하는 기법을 개발하고 실제 피해사례에 적용하였다. 그 결과, 미국 및 일본에 사용되고 있는 피해액 산정기법의 일괄적인 결과에 비해 현실적인 결과를 도출하여 비교하였으며 이를 통해 본 연구에서 개발 및 적용한 기술은 우리나라의 수도권 지역에 주로 분포하고 있는 도심지 반지하 주거형태의 실질적인 피해보상절차에 활용될 수 있고 민원 발생에 따른 적절한 대응 절차 마련 및 개선에 활용될 것으로 기대한다.

Seismic vulnerability assessment of buildings based on damage data after a near field earthquake (7 September 1999 Athens - Greece)

  • Eleftheriadou, Anastasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.117-140
    • /
    • 2012
  • The proposed research includes a comprehensive study on the seismic vulnerability assessment of typical building types, representative of the structural materials, the seismic codes and the construction techniques of Southern Europe. A damage database is created after the elaboration of the results of the observational data obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake, a near field seismic event in an extended urban region. The observational database comprises 180.945 buildings which developed damage of varying degree, type and extent. The dataset is elaborated in order to gather useful information about the structural parameters influence on the seismic vulnerability and their correlation to the type and degree of building damages in near field earthquakes. The damage calibration of the observational data was based on label - damage provided by Earthquake Planning and Protection Organization (EPPO) in Greece and referred to the qualitative characterization for the recording of damage in post-earthquake surveys. Important conclusions are drawn on the parameters that influence the seismic response based on the wide homogeneous database which adds to the reliability of the collected information and reduces the scatter on the produced results.

Geotechnical field investigation on giresun hazelnut licenced warehause and spot exchange

  • Angin, Zekai
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.547-563
    • /
    • 2016
  • This paper describes a geotechnical field investigation in Giresun hazelnut licenced warehause and spot exchange during twelve months to determine the soil profile and static project applicability. It is also aimed to determine the superstructure loads and evaluate the relevance of foundation filling materials of the main, laboratory, package and admin buildings. The main building has $88.50{\times}63.20(5593.2)m^2$ site area. It has a big raft foundation. Eleven geotechnical reports were prepared between 2 December 2014 and 25 May 2015. Maximum settlements and safe bearing capacities were calculated to decide to be able to proceed to the next step. Also, the detail observations and evaluations were presented from October 2014 to December 2014. It has been seen that the foundation is designed as a single foundation one. But, in the light of observations, it has been evaluated that the foundation project for package building is not adequate, and after these excavations it must be revised as a raft foundation. The thickness of foundation and structural details should be defined/drawn after analyzing the details by using a special software. Construction joints should be designed between different buildings interfaces to avoid damages and cracks with in different settlements. The environmental drainage must be projected and applied to avoid the probable damage of surface waters on foundations.