• Title/Summary/Keyword: Building Exterior

Search Result 575, Processing Time 0.022 seconds

Performance Evaluations of Mock-up Tests for ALC Panel Curtain Wall in Building Exterior (ALC 패널을 활용한 건축물 외장 커튼월에 대한 Mock-up Test 성능 평가 연구)

  • Kim, Young-Ho;Lee, Yong-Soo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.25-32
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the exterior materials or curtain wall system. The curtain wall system is a element that come to insulated portions of building envelope that results in heat loss. The purpose of this paper is to carried out mock-up tests for exterior wall used in autoclaved lightweight concrete panels in green building practices. Mock-up test execute a mixed process between standard test procedure and complex test procedure based on AAMA 501(American Society for Testing and Materials) and ASTM 283, ASTM 330(American Society for Testing and Materials). In results, tests meet the requirements that grant values in steps of procedures provided on ASTM and AAMA. ALC panel is suitable for a exterior wall product to be gratified thermal cycling performance and structural capacity, deflection(H/200) and lateral displacement(H/50), for curtain walls.

Fire Risk by Type of Building Exterior Material through Fire Cases (화재사례를 통한 건축물 외장재 종류별 화재발생위험성)

  • Lee, Jeong-Il;Kweon, Young-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • Recently, the number of cases of fire spreading due to exterior materials of buildings is increasing. Due to the nature of modern architecture, which emphasizes the aesthetics of buildings, because buildings pursue a splendid appearance, they are inexpensive and have relatively good insulation performance, but an increasing number of buildings are adopting insulation materials that have poor fire safety performance. The risk of spread is also greatly increased. Since the exterior wall of a building is made of a variety of materials and structures, it is composed of a combination of several elements, including materials such as insulation and finishing materials. Therefore, it was determined that it was necessary to introduce a more systematic evaluation method for building exterior materials, and to improve the system reflecting this, away from the existing evaluation method that only checked the fire safety performance of finishing materials.

Revitalization Methods of EIFS for High-rise Residential Buildings through Using TACT and Gangform System with Hanging Scaffolding

  • Lee, Sang-Hyun;Yi, June-Seong;Shin, Seung-Woo;Kang, Hae-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.407-418
    • /
    • 2011
  • Recently energy management measures at the political level, for the purpose of reducing energy consumption in the building sector, are being actively introduced. As a practical method, the exterior insulation method, which is proven to effective in reducing the energy loss through walls, has been favored. In this study, detailed implementations are suggested to activate exterior insulation system which can improve the housing insulation performance. The newly designed Gang-form system with hanging scaffolding was suggested to revamp constructability for finishing outer wall. The research results are based on a multifaceted analysis of the current problems of exterior insulation systems, and on recommendations proposed by exterior insulation experts in the Charrette discussion. The study has indicates that the customized TACT schedule considering the site condition has shortened the construction period to 5 months from 7.5 months. Through utilizing the suggestions of this study, the prevalence of exterior insulation systems is expected to become widespread.

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

Structural Performance Evaluation of Slab-Beam-Column Subassemblage in R/C Ordinary Moment Frame Building (철근콘크리트 보통모멘트 골조의 슬래브-보-기둥 부재의 구조성능 평가)

  • 유혁상;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.757-762
    • /
    • 2000
  • The purpose of this study is to investigate the performance of slab-beam-column subassemblage in the Ordinary Moment Frame(OMF). For this purpose, 3-story building was designed according to UBC and ACI building code(ACI 318-99) and the subassemblages of in the first story were constructed. The subassemblages were classified into interior and exterior. Each interior and exterior subassemblage is modeled by the 2/3 scale experimental specimens. All the specimens have the transverse beam and the columns on the slab have the lap splice as the typical exterior and interior slab-beam-column subassemblage. The interior subassemblage was tested under the constant axial force, while the exterior subassemblage was tested under the fluctuating axial force. Based on the results of the experiments, the performance of each subassemblage is evaluated and the failure mode is investigated.

  • PDF

An Experiment Study on the Safety of Exterior tile According to Setting Method. (외장타일의 시공방법에 따른 안정성에 관한 실험적 연구)

  • 김동준
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.13-20
    • /
    • 1987
  • Today, the conception of building architecture is changing the conception that it is a kind of product and the operator of construction try to produce excellent building through developing efficiency and materials of building component This study improves the problematic point of the exterior tile setting, through making an experiment on the method of it and purposes doing to do the exterior tile setting of good quality as it selects out of the most conformable the method. The experimental materials choose the tile of 60$\times$108 mm size which are using frequently in the exterior tile setting and ready mixed compound for bonding mortar. The methods of tile Betting utilize the method of the tile setting and laying, the method of the tile improved setting and laying, the method of the pressing adhesion, the method of the improved pressing adhesion and the method of setting adherent (the method of VIBRATOR).

  • PDF

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

Structural Performance for Sandwich Insulation of Reinforced-Concrete (현장타설 중단열 RC벽체의 구조적 성능)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.19-20
    • /
    • 2015
  • Building exterior wall's energy loss is very high rate comparing to all part of a buildings. And it account for upper 40% of cooling and heating load. So many studies conducted improving insulation performance of building's exterior, appeared about sandwich insulation wall which could be gaining merit of traditional insulation method those are exterior insulation and interior insulation. In this study, we inform structural performance of sandwich insulation wall for RC wall. For this, first, we define each wall's role and design sandwich insulation wall. At last, analyze structural performance of sandwich insulation wall. This study can contribute to apply it safely where side wall which toilet, stair area, etc.

  • PDF

Analysis of Construction RCB Exterior Wall Formwork Placing High on Nuclear Power Plant (원자력 발전소 RCB 외벽 거푸집 1단 타설 높이별 시공성 분석)

  • Song, Hyo-Min;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.205-206
    • /
    • 2014
  • It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. The purpose of this study attempts to evaluate the single-stage workability of the system given a change in the height of the setting of RCB exterior wall formwork to be used in nuclear power plant construction. As a result of this study, it is possible height of 3.5m~4m uses formwork when analyzing the construction period and material costs an increase in formwork by concrete lateral pressure, to ensure the workability of the RCB exterior wall formwork. Through this study, I want to provide as basic data for the improvement of workability and RCB shortening the construction period.

  • PDF

Usage Status and Environmental Sustainability Guidelines for Building Exterior Materials (건축물 외장재의 사용 현황과 친환경 성능)

  • Park, Jong-Soo;Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5861-5869
    • /
    • 2014
  • Existing studies of building exterior materials have focused on the colors or textures of cladding, and in terms of a design planning approach, have focused on the use of the environment and equipment and fire safety topics from an engineering perspective. As a result, little research has been done on performance guidelines for exterior materials, specifically according to the building type. Research into eco-friendly cladding materials is also in the rudimentary stage in a practical sense. In this study, the use of exterior materials over the last ten years in domestic construction was analyzed. The usage status of building exterior materials was evaluated quantitatively by frequency analysis, and its environmental performance is proposed through complex (qualitative + quantitative) analysis. The average value of the exterior material type number used for all analyzed buildings was 2.59. Glass, metal, stone, resin, cement, wood, and clay were used in that order with regard to the usage status. The analysis found that five of the materials satisfied the high efficiency and eco-friendly grading in terms of the four characteristics of an eco-friendly exterior. A list of eight eco-friendly elements was also proposed. The eco-friendly elements and characteristics of the exterior materials were derived to provide basic guidelines for domestic construction companies and design offices.