• 제목/요약/키워드: Building Energy Simulation

검색결과 684건 처리시간 0.027초

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

공동주택 간헐난방시스템의 에너지 절감 및 열환경 개선방안 연구 (Strategy of Energy Saving and Thermal Environment Improvement for Intermittent Heating System in Apartment Buildings)

  • 안병천;이태원
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.88-93
    • /
    • 2005
  • In this study, the operational characteristics on heating performance and energy consumption for intermittent hot water heating system in apartment buildings were research by simulation. The effects of apartment inlet hot water temperature and operation time per day on energy consumption and indoor thermal environment are investigated. The strategy of energy saving and thermal environment improvement is suggested in comparison with the existing ones.

블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구 (Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds)

  • 조원화;임남기
    • 한국건축시공학회지
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 2010
  • 본 연구에서는 전열해석 프로그램인 피지벨(PHYSIBEL)을 사용하여 블라인드 내장형 창호시스템의 일사차단성능 및 단열성능에 따른 에너지 성능을 평가하였다. 피지벨 해석시 창호별 구성 재료의 열적특성과 해석조건을 결정하기 위해서 Mock-up시험을 실시하였으며, 컴퓨터 시뮬레이션을 통한 결과를 바탕으로 공동주택 기준층 1개 세대(33평형)를 대상으로 연간에너지 소비특성, 연간전열량, 연간 냉난방 비용을 분석하였다. 실험결과, 연간전열량은 일반 창호시스템 대비 블라인드 내장형 창호시스템에서 블라인드를 올린 경우 냉방시 10%, 난방시 11% 절감할 수 있으며, 블라인드를 내린 경우 냉방시 25%, 난방시 30%정도를 절감할 수 있는 것으로 나타났다. 블라인드 내장형 창호시스템의 냉 난방 부하 절감량은 일반 창호시스템에 비해 냉방시 283.3KWh, 난방시 76.3KWh 로 냉 난방 에너지 절감효과는 단위세대당 359.6KWh 절감시킬 수 있는 것으로 나타났으며, 이것은 단위세대당 연간 에너지원단위(TOE) 약 0.078toe, 이산화탄소톤($tCO_2$) $0.16tCO_2$을 절감시킬 수 있어 온실가스 저감에도 유리할 것으로 판단된다. 또한, 블라인드 내장형 창호시스템의 냉 난방비용 절감액은 일반창호시스템과 비교하여 연간 냉방비용 10만원, 난방비용 5만원으로 연간 냉 난방 비용을 약 15만원 정도 절감시킬 수 있는 것으로 나타났다.

수직형 소형풍력터빈의 비정상 익력 평가 (Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine)

  • 이상문;김철규;전석윤;알사지드;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

해수열원 히트펌프 시스템의 운전특성 (The Operation Characteristics of a Sea Water Source Heat Pump System)

  • 장기창;백영진;나호상;김지영;이재훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1353-1357
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

공동주택에서 필로티 세대의 난방에너지 분석 (The Analysis of the Heating Energy in Apartment Houses with Pilotis)

  • 안민희;최창호;이현우;조민관
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.99-104
    • /
    • 2006
  • This paper presents an analysis of heating energy for apartment houses in apartment building, paying special attention on the effect of pilotis which is increasing recently. A four-zone model composed of one conditioned and three unconditioned space is developed in this study. IES VE is adopted to estimate heating energy. Especially, we used Apache module for a heating energy calculated. The predicted result shows fairly good agreements with the available measured data and simulation data. Heating energy needed for an apartment located on the pilotis floors is far greater compared with the case of intermediate floors. Insulation thickness of walls, floors and underground structure appears to be a dominant factor affecting heating energy, which leads to needs of revision of the related regulation. It is finally concluded that the location dependent, severe imbalance in heating energy should be improved and reflected in the policy making process and the design standards.

An energy-efficient technique for mobile-wireless-sensor-network-based IoT

  • Singla, Jatin;Mahajan, Rita;Bagai, Deepak
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.389-399
    • /
    • 2022
  • Wireless sensor networks (WSNs) are one of the basic building blocks of Internet of Things (IoT) systems. However, the wireless sensing nodes in WSNs suffer from energy constraint issues because the replacement/recharging of the batteries of the nodes tends to be difficult. Furthermore, a number of realistic IoT scenarios, such as habitat and battlefield monitoring, contain mobile sensing elements, which makes the energy issues more critical. This research paper focuses on realistic WSN scenarios that involve mobile sensing elements with the aim of mitigating the attendant energy constraint issues using the concept of radio-frequency (RF) energy extraction. The proposed technique incorporates a cluster head election workflow for WSNs that includes mobile sensing elements capable of RF energy harvesting. The extensive simulation analysis demonstrated the higher efficacy of the proposed technique compared with the existing techniques in terms of residual energy, number of functional nodes, and network lifetime, with approximately 50% of the nodes found to be functional at the 4000th, 5000th, and 6000th rounds for the proposed technique with initial energies of 0.25, 0.5 and 1 J, respectively.

지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발 (Development of Optimum Design Method for Geothermal Performance based on Energy Simulation)

  • 문형진;김홍교;남유진
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.

생물안전 3등급(BSL3)시설의 생물재해 시나리오에 따른 실내 공기환경예측에 관한 연구 (A Study on the Prediction of Indoor Environment in Bio Safety Level 3 Laboratory According to Biohazard Scenario)

  • 박현진;홍진관
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.745-750
    • /
    • 2010
  • Since the implementation of the LMO Law in Korea, the importance of the design qualification of BSL3 lab. is emphasizing. In this study, multizone simulation for three kind of biohazard scenarios using CONTAM is performed for design qualification of BSL3 lab. Also, in the case of unexpected spread of contaminants such as Influenza A virus(H1N1) in BL3 zone, the design qualification is carried out for diffusion and decontamination of contaminants according to differential pressure of BSL3 anteroom and door area of BSL3 lab. Also, in this study, appropriateness of laboratory room differential pressure and air flow rate to maintain pressure difference between laboratory rooms, and energy consumption due to air change rate variation according to door area in BL3 lab. Simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.