• Title/Summary/Keyword: Building Energy Simulation

Search Result 681, Processing Time 0.041 seconds

ENERGY EFFICIENT BUILDING DESIGN THROUGH DATA MINING APPROACH

  • Hyunjoo Kim;Wooyoung Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.601-605
    • /
    • 2009
  • The objective of this research is to develop a knowledge discovery framework which can help project teams discover useful patterns to improve energy efficient building design. This paper utilizes the technology of data mining to automatically extract concepts, interrelationships and patterns of interest from a large dataset. By applying data mining technology to the analysis of energy efficient building designs one can identify valid, useful, and previously unknown patterns of energy simulation modeling.

  • PDF

Energy Sustainability of an Integrative Kinetic Light Shelf Unit

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.15-20
    • /
    • 2015
  • Purpose: Suggesting a working prototype of a kinetic light shelf unit and revealing its energy efficiency by a series of building performance simulations were presented. Recently, kinetic building envelope has been an emerging technology as an innovative way to control exterior building environment, but products from many researches about the facade could not been reached to the industrialization so far. That is because its initial installation, operation and maintenance costs are still too high to use for the practical field, although buildings using kinetic envelopes could decrease their energy consumption significantly. This narrow point of view needs to be reconsidered, since buildings require great amount of energies to run their functions through the whole life and using better building components can lead to achieve much more benefits in aspects of the lifecycle cost (LCC). Method: A series of certified simulation tools like Ecotect and Green Building Studio that are normally used for researches and developments in the field of architecture were utilized. Result: Based on simulation analyses, the result of the study has showed that the proposed system definitely has adaptability to the professions and positively shows practicability as advanced integrative building envelopes with renewable energy association.

A Review of Greenhouse Energy Management by Using Building Energy Simulation (BES 프로그램을 이용한 온실의 에너지 관리)

  • Rasheed, Adnan;Lee, Jong Won;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • This paper attempts to present a review about simulation of different greenhouse parameters and energy supplying techniques by using building energy simulation, to find out the optimal solution for keeping greenhouse microclimate favorable for the crop production. The objectives of conducting this study were, to describe the various energy systems and techniques used for the greenhouse energy management and efficiency analysis of these technologies by using building energy simulation. We describe different models to understand the behavior of the energy saving technologies with respect to the resources available and different outside climatic conditions. We identified main features of the building energy simulation software, that enable users, to simulate hybrid agricultural building projects by using user defined parameters. At the end of the paper we draw some important concluding remarks on the basis of reviewing all the investigators contributions for the developments of simulation model of agricultural greenhouse energy management, using a building energy simulation software specifically TRNSYS. In conclusion, this paper provides information that TRNSYS have great potential for agricultural buildings energy simulation along with the renewable energy resources and energy saving techniques. This review paper provides aid to greenhouse researcher and energy planner for the future studies of greenhouses energy planning.

TMY2 Weather data for Korea (TMY2 방식에 의한 국내 기상자료 작성 연구)

  • Shin, Kee-Shik;Yoon, Chang-Ryuel;Park, Sang-Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.243-246
    • /
    • 2009
  • To evaluate the building energy performance, many building simulation programs are used and its capabilities are developed. Despite of its increased capabilities the weather data used In the Building Energy performance evaluation, are still using the same limited set of data. This often forces users to find or calculate weather data such as illuminance, solar radiation, and ground temperature from other sources to calculate it. Also, proper selection of a right weather data set has been considered as one of important factors for a successful building energy simulation. In this paper, we describe TMY2 data, a generalized weather data format developed for use, and applied to Seoul region and examine the differences comparing to existing weather data. A set of 23 years raw weather data base has been developed to provide the weather data file for building energy analysis in Seoul.

  • PDF

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

Study of Comparison on Energy Consumption Based on HVAC area along Floor in High Rise Building (고층빌딩의 층별 에너지 사용량 비교에 관한 연구)

  • Park, Woo-Pyeng;Choi, Byong-Jeong;Kim, Jin-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, the energy consumption of the typical floor was compared by the total energy comsumption of the building in highrise building. In gerneral, many researchers are studying on the typical floor in highrise buildings for avoiding complexity in energy simulation. But few papers are studied on energy consumption along the floors. In the model bulding, the energy consumption data were acquired by BEMS system in 2011. According the data, the total net energy consumption was $193.99kWh/m^2$ for all area and the total net energy consumption was $247.61kWh/m^2$ for HVACR area. The total electricity and gas energy are used 47.7% for heating and cooling, 33.5% for lighting and plug, 12.9% for conveyance power and 5.9% for restaurant. In comparison of only ground floor, amount of energy consumption in the lobby is 10%, and 90% of total energy consumption is used in the typical floor. For this result, energy simulation on the typical floor is acceptable for calculating the total energy consumption in the highrise building.

An Analysis of Heating and Cooling Energy and Effect on Outdoor Air Cooling according to Building Type of Apartment Complex (공동주택 단지의 주동형식에 따른 냉난방 에너지 및 외기냉방 효과 분석)

  • Roh, Ji-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.31-38
    • /
    • 2014
  • This study makes three apartment building complex an object of analyzing representative building types and energy consumption rate of house holds, and effect of outdoor air cooling. Recently created apatrment complex is composed of very various types of building, plan, and orientation etc. But, it is difficult to remark conclusively that these various types of buildings are designed energy-effectively. Because architects are hard to find useful energy design guideline for decision making. By the preceding study, the present condition and problem about this subject is grasped, apartment building types were examined and representative types were extracted. In this study, energy simulation was conducted, and the effect to outdoor air cooling was analyzed about representative types of the subject apartment complex. It is expected that this analysed results will be basic data for the more integrated study. Research consequence can be summarized as follow: 1) Besides solar gain, household layout of building, orientation, and plan etc. effects compositively on energy consumption rate. 2) The effect of ourdoor air cooling in building of tower type can be improved by arranging households appropriately.

Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building (학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

The Energy Performance Analysis of Large Scale Store Using Dynamic Thermal Analysis Simulation Program (동적열해석프로그램을 이용한 대형할인매장의 에너지 소비 특성 분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.44-49
    • /
    • 2010
  • The purpose of this study is to analyze the situation of energy consumption and its characteristics in large scale store. The related survey is carried out in large scale store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and others. The area of large scale discount store is about $65000m^2$, located in Daejeon. For Annual Energy Analysis of building, We surveyed used energy for 1 year and simulated using a building energy simulation(TRNSYS 16). The results of this study are as follows. 1)The amount of annual total energy consumption are 18615.244MWh/yr(286.4KWh/$m^2yr$), The rate of heating, cooling and base energy(for hot water, lighting, ventilation, equipments, cooking and others) is 3054MWh/yr(47kWh/$m^2yr$), 5660.09MWh/yr(87.08kWh/$m^2yr$), 9900.47MWh/yr(152.31KWh/$m^2yr$) respectively. The total used energy is higher than others building in Korea. Especially, The energy consumption of large scale store is very depends on operating period and pattern such as space temperature, occupancy, lighting system, equipments operating schedule and etc.

A Case Study on the Building Energy Savings through HVAC System Optimization Process (공조시스뎀 최적화를 통한 건물에너지 절감사례 연구)

  • Huh Jung-Ho;Kwon Han-Sol;Han Soo-Gon;Ihm Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.426-433
    • /
    • 2006
  • The requirements for the optimal building system design is numerous. However, most system designers do not take care of various design strategies. They often argue that the proper simulation tools are not existed to solve the implicated design requirements and the time to consider many alternatives of building systems are insufficient. The aim of this study is to develop the optimization interface program that considers various system design variables and eventually find both the optimal values of annual energy use and cost. Therefore, Doe2Opt is developed to easily perform simulation-optimization process based on DOE2 and GenOpt, and minimizes energy cost of small-to-medium sized building for 6.7% and that of large sized building for 3% with optimizing several HVAC system variables.