• Title/Summary/Keyword: Building Energy Reduction

Search Result 462, Processing Time 0.039 seconds

A Study of Case Analysis on Green Building Certification Criteria for Advanced Methods (사례분석을 통한 친환경 건축물 인증제도 개선방향 연구)

  • Mo, Ji-Sun;Kim, Chul;Lim, Tae-Sub;Kang, Youn-Do;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.178-183
    • /
    • 2008
  • Recently, sick house syndrome caused by pollutants and contamination of buildings crops out in residential environment of buildings. According to price increase of global oil, comfort of occupants in indoor air quality is required with reduction of energy consumption and environmental load. So, building performance certification criteria come into effect for improvement of building energy efficiency and performance in environment at home and abroad. GBCC(Green Building Certification Criteria) of domestic country as a Criteria is managed Korea Green Building Council(KGBC) for green building. Thus, purpose of this study is to design a direction of Green Building Certification Criteria for improvement through analysis of GBCC application elements and selected building.

  • PDF

A study on the Insulation Performance of the Super Window applied to building energy efficiency rating (초단열 슈퍼윈도우의 건물에너지효율등급 적용 연구)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.205-210
    • /
    • 2009
  • Generally, the building's windows and ventilation for the purpose of mining and the vista and windows by emotional engineering design area is a growing trend. According to the flow of energy is lost from the building, will be achieved through the walls and roof and windows. Among these, the window through the loss of about 45% of the entire building is big enough to rate. In addition, the building regulation U-value Limitation of window is $3.3W/m^2$ K in southern regions, while U-value Limitation of wall is $0.35{\sim}0.58W/m^2$ K. It means that the energy loss through windows is six times more than it through wall. Therefore, the purpose of this study is to evaluate the environmental performance of the super window system by verification experiment. The results of this study are as follows; 1)Thermal performance of insulated Super Window measured as $1.44W/m^2$ $^{\circ}C$ 2)Required energy for heating was cut down about 5.3% from 266.99 $MJ/m^2$ yr to 252.85 $MJ/m^2$ yr 3)Super Window's reduction rates increased 4.1% from 31.48% to 35.58% when it is compared to normal windows. 4)Building energy efficiency rating elevated from 2nd rating to 1st rating.

  • PDF

Market Analysis on Green Building Certification System of the United Korean Peninsula based on the New Building Prediction in North Korea - Focused on Building Energy Conservation Plan, Building Energy Rating Certification, and Green Standard for Energy and Environmental Design (G-SEED) - (북한의 신축 건축물 예측을 통한 통일 후 한반도 녹색건축물 관련 인증제도의 시장 분석 - 건축물에너지절약계획서, 건축물에너지효율등급 및 녹색건축인증을 중심으로 -)

  • Kwak, Young-Hoon;Shin, Sung-Eun;Park, Jin-Young;Do, Hwa-Yong;Kim, Hea-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.75-85
    • /
    • 2016
  • This research aims to predict and analyze green building certification market of Korean Peninsula after unification. First, it analyzes prospected unification time period, then it forecasts number of new residential and non-residential buildings to be constructed based on estimated number of residences in short at the time in North Korea. There exists a good chance that North Korea's new building market forms similar to that of South Korea, as unification would thoroughly proceed which would result levels of economic culture social politics in quasi-equal state. Thus, assuming the ratio of residential and non-residential building against population is similar in both Korea's, the number against North Korea's house supplied population can be estimated. Based on the expected numbers in North Korea, number of proceeded Building Energy Conservation Plan, Building Energy Rating Certification, and Green Standard for Energy and Environmental Design (G-SEED) are predicted. The research shows certification market related to green building in united Korean Peninsula to be \660 billion over 10 years. Not only certifications to newly built buildings but also including existing buildings, this market is to grow to a considerable extent. As this would largely influence eco-constructive materials, energy plant/equipment, and other relevant markets as well, it would require to make thorough preparations. In sum, to stabilize green building market even before the unification, the research proposes the necessities of appropriate systems in consideration of North Korea, through in-depth discussions and establishment of technology and policy directions in green building sector, such as building energy management and emission reduction technology.

An Evaluation of Net-zero Contribution Regarding Hydrogen Energy Conversion in Urban Building and Transport Sector (도시의 건물 및 수송 부문에서의 수소에너지 전환에 따른 탄소중립 기여도 평가)

  • SO JEONG JANG;RAE SANG PARK;YOUNG HOON CHOI;YONG WOO HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.100-112
    • /
    • 2023
  • This study evaluated the contribution of carbon neutrality by calculating the carbon reduction amount and reduction intensity targeting the hydrogen pilot city and applying it to the carbon neutral reduction target. In the building sector, the reduction amount for 2030 was 10.8% on average. In addition, by 2050, the contribution to carbon neutrality of plan A was 14.1% on average, and the contribution to carbon neutrality of plan B was 15.1% on average. In the 2030 reduction amount of the transportation sector, the contribution to carbon neutrality was 138.4% on average. In addition, by 2050, the contribution to carbon neutrality in plan A was 82.5% on average, and the contribution to carbon neutrality in plan B was 74.9%. From the above research results, additional carbon reduction is possible when creating a hydrogen city, so it will be used as a basis of city-level carbon neutral model. It will also be used as a basis for technology development and investment promotion for various hydrogen supply methods in the future.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

Selection of the Optimal Building Skin-System in Remodeling Projects (그린 리모델링을 위한, 적정 외피시스템 선정에 관한 연구)

  • Shin, Young-Su;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.296-297
    • /
    • 2014
  • United Nations Framework Convention on Climate Change(UNFCCC), an international treaty to prevent the regulation and global warming, has passed through the General Assembly for 17 times from 1992 to 2011. To create a performance plan specific, such as the Kyoto Protocol, it is to promote the reduction of energy consumption and greenhouse gases worldwide. In South Korea, Korea Infrastructure Safety and Technology Corporation(KISTEC) is working and supporting for developing method of green remodeling policy. Among several solutions, "Remodeling" ensures to increase the energy efficiency of buildings and to reduce the emissions of greenhouse gases, and consequently it could maintain buildings high efficiency. For remodeling projects, it is most important to determine construction plan including remodeling scopes and methods, while the plan has been determined by the engineer's background and experience. Therefore, this study aims at developing a method for selecting optimal skin system which has remarkable influence to energy performance of the buildings.

  • PDF

Applicability Analysis of Photovoltaic System in the Construction Phase of High-rise Buildings (초고층 건축물 시공단계를 위한 태양광시스템의 적용성 분석)

  • Kang, Go-Une;Kim, Tae-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • Recently, the development of alternative energy technologies has been actively conducted for energy conservation and CO2 emission reduction. Especially, photovoltaic energy has been applied practically in construction industry, and research on the building-integrated photovoltaic system (BIPV) that can replace fossil fuel for building operation and maintenance has been performed. However, this vibrant research has been limited to the use phase of buildings, and few studies have been carried out in the construction phase. The construction duration and the scale of the sites have increased along with the high-rise trend of buildings, and it is forecasted that the temporary electricity use and CO2 emission in the construction phase is increasing. In sight of these developments, this research analyzed applicability of the photovoltaic system for the construction phase that can replace the electricity used on the high-rise construction site.

  • PDF

A Pilot Project on the Integrated System Design for Developing the Sustainable Housing Model (친환경 공동주택 구현을 위한 저에너지 설비시스템 통합설계 방안 및 파일럿 프로젝트 계획)

  • Cho, Jin-Kyun;Sung, Jae-Ho;Shin, Seon-Joon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1049-1054
    • /
    • 2009
  • Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.

  • PDF

Analysis of Annual Operation Status of Central Heating and Cooling System in a Public Office Building (공공건물 중앙식 냉난방시스템의 연간 운영 사례 분석)

  • Ra, Seon-Jung;Aum, Tae-Yun;Son, Jin-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.175-180
    • /
    • 2020
  • The purpose of this study was to clarify precautions during the design and operation phases for energy reduction in a public office building. To check the operation status of the building, we measured the indoor temperature and humidity in the office space of the building installed central heating and cooling systems. And we analyzed these data and annual BEMS data. As a result, we found six problems related to decreasing system efficiency. Based on these, we presented the information to improve the efficiency of the system from the design and operation phase. Also, we present the need for a system to support the decision-making of operational managers in real-time for the energy efficiency of the building.