• Title/Summary/Keyword: Buckling Test

Search Result 501, Processing Time 0.033 seconds

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load (파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석)

  • Choi, Myeong Ki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Experimental Study on Ultimate Shear Strength of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 극한전단강도에 관한 실험연구)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.727-734
    • /
    • 2006
  • Although a limited number of experimental investigations and finite element analyses revealed that a curved web panel in practical design has a considerable reserve strength after the elastic buckling as a straight girder web panel, the current Guide Specifications for Horizontally Curved Steel Girder Highway Bridges (AASHTO, 2003) do not consider the postbuckling strength in the ultimate shear strength due to lack of a comprehensive study. In this study, the ultimate shear strength behavior of horizontally curved steel web panels was investigated through nonlinear finite element analysis and experimental test. It was found that curved web panels used in practical designs are able to develop the postbuckling strength that is equivalent to that of straight girder web panels having the same dimensional and material properties.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Seismic Performance of Hollow Rectangular Precast Segmental Piers (프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능)

  • Lee, Jae-Hoon;Park, Dong-Kyu;Choi, Jin-Ho;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.705-714
    • /
    • 2012
  • Precast reinforced concrete bridge columns with hollow rectangular section were tested under cyclic lateral load with constant axial force to investigate its seismic performance. After all the precast column segments were erected, longitudinal reinforcement was inserted in the sheath prefabricated in the segments, which were then mortar grouted. Main variables of the test series were column aspect ratio, longitudinal reinforcement ratio, amount of lateral reinforcement, and location of segment joints. The aspect ratios were 4.5 and 2.5, and the longitudinal steel ratios were 1.15% and 3.07%. The amount of lateral reinforcement were 95%, 55%, 50%, and 27% of the minimum amount for full ductility design requirements in the Korean Bridge Design Code. The locations of segment joints in plastic hinge region were 0.5 and 1.0 times of the section depth from the bottom column end. The test results of cracking and failure mode, axial-flexural strength, lateral load-displacement relationship, and displacement ductility are presented. Then, safety of the ductility demand based seismic design in the Korean Bridge Design Code is discussed. The column specimens showed larger ductility than expected, because buckling of longitudinal reinforcing bar was prevented due to confinement developed not only by transverse steel but also by sheath and infilling mortar.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

Compressive Strength and Residual Stress Evaluation of Stub Columns Fabricated of High Strength Steel (고강도강재 단주의 압축강도 및 잔류응력 평가)

  • Lee, Cheol-Ho;Kim, Dae-Kyung;Han, Kyu-Hong;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • In this study, stub columns subjected to concentrical and eccentrical loads were tested to check the applicability of the current local stability criteria (KBC2009, AISC2005) to 800MPa high-strength steel (HSA800). The key test variables in the concentrically loaded tests included the plate-edge restraints and the width-to-thickness ratio normalized by the yield strength of steel. Specimens made of ordinary steel (SM490) were also tested for comparative purposes. Eccentrically loaded stub column tests were conducted for a range of the P-M combinations by controlling the loading eccentricity. All the concentrically loaded specimens with non-compact and slender sections developed sufficient strengths according to the current local stability criteria. All the eccentrically loaded specimens with non-compact H sections also exhibited a sufficient P-M interaction strength that was even higher than that of compact H- section counterparts. Residual stresses were also measured by using the non-destructive indentation method to demonstrate their dependency or independency on the steel material's yield strength. The measured results of this study also indicated that the magnitude of residual stresses bears no strong relation to the yield strength of the steel material.