Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.3.309

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns  

Memarzadeh, Armin (Department of Civil Engineering, University of Mazandaran)
Shahmansouri, Amir Ali (Department of Civil Engineering, University of Mazandaran)
Poologanathan, Keerthan (Faculty of Engineering and Environment, Northumbria University)
Publication Information
Steel and Composite Structures / v.44, no.3, 2022 , pp. 309-324 More about this Journal
Abstract
The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.
Keywords
concrete-filled steel tube; elastic modulus; gene expression programming; post-fire behavior; recycled aggregate concrete;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Bengar, H.A. and Shahmansouri, A.A. (2021), "Post-fire behavior of unconfined and steel tube confined rubberized concrete under axial compression", Structures. 32, 731-745. https://doi.org/10.1016/j.istruc.2021.03.041.   DOI
2 Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", arXiv preprint cs/0102027. https://doi.org/10.48550/arXiv.cs/0102027.   DOI
3 Seghier, M.E.A.B., Gao, X.-Z., Jafari-Asl, J., Thai, D.-K., Ohadi, S. and Trung, N.-T. (2021), "Modeling the nonlinear behavior of ACC for SCFST columns using experimental-data and a novel evolutionary-algorithm", Structures. 30 692-709. https://doi.org/10.1016/j.istruc.2021.01.036.   DOI
4 Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Safety J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.   DOI
5 Asteris, P.G., Lemonis, M.E., Nguyen, T.-A., Van Le, H. and Pham, B.T. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471. https://doi.org/10.12989/scs.2021.39.4.471.   DOI
6 Avci-Karatas, C. (2022), "Application of machine learning in prediction of shear capacity of headed steel studs in steel-concrete composite structures", Int. J. Steel Struct., 22(2), 539-556. https://doi.org/10.1007/s13296-022-00589-z.   DOI
7 Che, Y., Wang, Q. and Shao, Y. (2012), "Compressive performances of the concrete filled circular CFRP-steel tube (CCFRP-CFST)", Int. J. Adv. Steel Construct., 8(4), 311-338. https://doi.org/10.18057/IJASC.2012.8.4.2.   DOI
8 Chen, Y., He, K., Han, S. and Wei, J. (2018), "Experimental investigation of square concrete filled stainless steel tubular stub columns after exposure to elevated temperatures", Thin-Walled Struct., 130 12-31. https://doi.org/10.1016/j.tws.2018.05.007.   DOI
9 Falcone, R., Lima, C. and Martinelli, E. (2020), "Soft computing techniques in structural and earthquake engineering: A literature review", Eng. Struct., 207 110269. https://doi.org/10.1016/j.engstruct.2020.110269.   DOI
10 Ferreira, C. (2002), Gene Expression Programming in Problem Solving, Springer. https://doi.org/10.1007/978-1-4471-0123- 9_54.   DOI
11 Hisham, M., Hamdy, G.A. and El-Mahdy, O.O. (2021), "Prediction of temperature variation in FRP-wrapped RC columns exposed to fire using artificial neural networks", Eng. Struct., 238 112219. https://doi.org/10.1016/j.engstruct.2021.112219.   DOI
12 Ferreira, C. (2003), Function Finding and the Creation of Numerical Constants in Gene Expression Programming, Springer. https://doi.org/10.1007/978-1-4471-3744-3_25.   DOI
13 Fu, Z., Ji, B., Wu, D. and Yu, Z. (2019), "Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load", Steel Compos. Struct., 32(6), 717-729. https://doi.org/10.12989/scs.2019.32.6.717.   DOI
14 Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.   DOI
15 Huo, J., Huang, G. and Xiao, Y. (2009), "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Construct. Steel Res., 65(8-9), 1664-1676. https://doi.org/10.1016/j.jcsr.2009.04.022.   DOI
16 Kabir, M.A.B., Hasan, A.S. and Billah, A.M. (2021), "Failure mode identification of column base plate connection using datadriven machine learning techniques", Eng. Struct., 240 112389. https://doi.org/10.1016/j.engstruct.2021.112389.   DOI
17 Zarringol, M., Thai, H.-T., Thai, S. and Patel, V. (2020), "Application of ANN to the design of CFST columns", Structures. 28 2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048.   DOI
18 Memarzadeh, A., Nematzadeh, M. and Ahmadi, M. (2021), "Compressive performance of steel fiber-reinforced concreteencased steel composite stub columns", Modares Civil Eng. J., 21(3), 189-203.
19 Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021), "A review on fire resistance of steelconcrete composite slim-floor beams", Steel Compos. Struct., 40(1), 13-32. https://doi.org/10.12989/scs.2021.40.1.013.   DOI
20 Memarzadeh, A., Nematzadeh, M. and Jafarzadeh, H. (2022), "Experimental Study on Elastic Modulus of Steel Stub Columns Encased in RC Containing Steel Fibers", J. Struct. Construct. Eng., 8(12), 325-343. https://doi.org/10.22065/JSCE.2021.285696.2452.   DOI
21 Meng, F.-Q., Zhu, M.-C., Clifton, G.C., Ukanwa Kingsley, U. and Lim James, B.P. (2021), "Fire performance of edge and interior circular steel-reinforced concrete-filled steel tubular stub columns", Steel Compos. Struct., 41(1), 115-122. https://doi.org/10.12989/scs.2021.41.1.115.   DOI
22 Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2020), "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming", Eng. Struct., 219, 110909. https://doi.org/10.1016/j.engstruct.2020.110909.   DOI
23 Naser, M., Thai, S. and Thai, H.-T. (2021), "Evaluating structural response of concrete-filled steel tubular columns through machine learning", J. Build. Eng., 34 101888. https://doi.org/10.1016/j.jobe.2020.101888.   DOI
24 Naser, M.Z., Kodur, V., Thai, H.-T., Hawileh, R., Abdalla, J. and Degtyarev, V.V. (2021), "StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains", J. Build. Eng., 102977. https://doi.org/10.1016/j.jobe.2021.102977.   DOI
25 Kazmi, S.M.S., Munir, M.J., Wu, Y.-F., Lin, X. and Ahmad, M.R. (2021), "Investigation of thermal performance of concrete incorporating different types of recycled coarse aggregates", Construct. Build. Mater., 270 121433. https://doi.org/10.1016/j.conbuildmat.2020.121433.   DOI
26 Gandomi, A.H., Roke, D.A. and Sett, K. (2013), "Genetic programming for moment capacity modeling of ferrocement members", Eng. Struct., 57 169-176. https://doi.org/10.1016/j.engstruct.2013.09.022.   DOI
27 Hu, X., Guo, H. and Yao, Y. (2015), "Interaction approach for concrete filled steel tube columns under fire conditions", J. Build. Eng., 3 144-154. https://doi.org/10.1016/j.jobe.2015.07.006.   DOI
28 Kadhim, I.T. and Guneyisi, E.M. (2018), "Code based assessment of load capacity of steel tubular columns infilled with recycled aggregate concrete under compression", Construct. Build. Mater., 168 715-731. https://doi.org/10.1016/j.conbuildmat.2018.02.088.   DOI
29 Kim, S.-E., Vu, Q.-V., Papazafeiropoulos, G., Kong, Z. and Truong, V.-H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.   DOI
30 Koza, J.R. (1994), "Genetic programming as a means for programming computers by natural selection", Statistic. Comput., 4(2), 87-112. https://doi.org/10.1007/BF00175355.   DOI
31 Memarzadeh, A. and Nematzadeh, M. (2021), "Axial compressive performance of steel reinforced fibrous concrete composite stub columns: Experimental and theoretical study", Struct., 34 2455-2475. https://doi.org/10.1016/j.istruc.2021.08.130.   DOI
32 Li, W., Luo, Z., Wu, C. and Duan, W.H. (2018), "Impact performances of steel tube-confined recycled aggregate concrete (STCRAC) after exposure to elevated temperatures", Cement Concrete Compos., 86, 87-97. https://doi.org/10.1016/j.cemconcomp.2017.11.009.   DOI
33 Luat, N.-V., Shin, J., Han, S.W., Nguyen, N.-V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach", Steel Compos. Struct., 40(3), 461-479. https://doi.org/10.12989/scs.2021.40.3.461.   DOI
34 Mansouri, I., Guneyisi, E.M. and Mosalam, K.M. (2021), "Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming", Eng. Struct., 228 111563. https://doi.org/10.1016/j.engstruct.2020.111563.   DOI
35 Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020), "Postfire elastic modulus of rubberized fiber-reinforced concretefilled steel tubular stub columns: Experimental and theoretical study", J. Construct. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.   DOI
36 Ukanwa, K.U., Clifton, G.C., Lim, J.B.P., Hicks, S.J., Sharma, U. and Abu, A. (2018), "Design of a continuous concrete filled steel tubular column in fire", Thin-Wall. Struct., 131, 192-204. https://doi.org/10.1016/j.tws.2018.07.001.   DOI
37 Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", Structures. 31 1141-1162. https://doi.org/10.1016/j.istruc.2021.02.015.   DOI
38 Nguyen, H.D., Zhang, Q., Choi, E. and Duan, W. (2020), "An improved deflection model for FRP RC beams using an artificial intelligence-based approach", Eng. Struct., 219 110793. https://doi.org/10.1016/j.engstruct.2020.110793.   DOI
39 Tran, V.-L., Thai, D.-K. and Kim, S.-E. (2019), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.   DOI
40 Wang, Y., Chen, J. and Geng, Y. (2015), "Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns", Eng. Struct., 86, 192-212. https://doi.org/10.1016/j.engstruct.2015.01.007.   DOI
41 Wang, Y., Chen, P., Liu, C. and Zhang, Y. (2017), "Size effect of circular concrete-filled steel tubular short columns subjected to axial compression", Thin-Wall. Struct., 120 397-407. https://doi.org/10.1016/j.tws.2017.09.010.   DOI
42 Wang, Z.-B., Tao, Z., Han, L.-H., Uy, B., Lam, D. and Kang, W.-H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.   DOI
43 Patel, V.I. (2020), "Analysis of uniaxially loaded short roundended concrete-filled steel tubular beam-columns", Eng. Struct., 205 110098. https://doi.org/10.1016/j.engstruct.2019.110098.   DOI
44 Xiao, J., Wang, C., Ding, T. and Akbarnezhad, A. (2018), "A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint", J. Cleaner Product., 199 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210.   DOI
45 Xu, J., Wang, Y., Ren, R., Wu, Z. and Ozbakkaloglu, T. (2020), "Performance evaluation of recycled aggregate concrete-filled steel tubes under different loading conditions: Database analysis and modelling", J. Build. Eng., 30 101308. https://doi.org/10.1016/j.jobe.2020.101308.   DOI
46 Nguyen, M.-S., Thai, D.-K. and Kim, S.-E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.1016/j.compositesb.2019.106938.   DOI
47 Rodrigues, J.P.C., Correia, A.J. and Kodur, V. (2021), "Influence of cross-section type and boundary conditions on structural behavior of concrete-filled steel tubular columns subjected to fire", J. Struct. Eng., 147(1), 04020289. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002860.   DOI
48 Romero, M.L., Espinos, A., Lapuebla-Ferri, A., Albero, V. and Hospitaler, A. (2020), "Recent developments and fire design provisions for CFST columns and slim-floor beams", J. Construct. Steel Res., 172 106159. https://doi.org/10.1016/j.jcsr.2020.106159   DOI
49 Xu, J., Zhao, X., Chen, Z., Liu, J., Xue, J. and Elchalakani, M. (2019), "Novel prediction models for composite elastic modulus of circular recycled aggregate concrete-filled steel tubes", ThinWall. Struct., 144 106317. https://doi.org/10.1016/j.tws.2019.106317.   DOI
50 Shahmansouri, A.A., Akbarzadeh Bengar, H. and Jafari, A. (2020), "Modeling the lateral behavior of concrete rocking walls using multi-objective neural network", J. Concrete Struct. Mater., 5(2), 110-128. https://doi.org/10.30478/jcsm.2021.272480.1192.   DOI
51 Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M.Z. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224 111221. https://doi.org/10.1016/j.engstruct.2020.111221.   DOI
52 Tam, V.W., Wang, Z.-B. and Tao, Z. (2014), "Behaviour of recycled aggregate concrete filled stainless steel stub columns", Mater. Struct., 47(1), 293-310. https://doi.org/10.1617/s11527-013-0061-1.   DOI
53 Tam, V.W.Y., Tao, Z. and Evangelista, A. (2021), "Performance of recycled aggregate concrete filled steel tubular (RACFST) stub columns with expansive agent", Construct. Build. Mater., 272, 121627. https://doi.org/1010.1016/j.conbuildmat.2020.121627.   DOI
54 Tang, Y.-C., Li, L.-J., Feng, W.-X., Liu, F. and Liao, B. (2017), "Seismic performance of recycled aggregate concrete-filled steel tube columns", J. Construct. Steel Res., 133 112-124. https://doi.org/101010.1016/j.jcsr.2017.02.006.   DOI
55 Tang, Y.-C., Li, L.-J., Feng, W.-X., Liu, F. and Zhu, M. (2018), "Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns", J. Construct. Steel Res., 148, 1-15. https://doi.org/10.1016/j.jcsr.2018.04.031.   DOI
56 Thanh Duong, H., Chi Phan, H., Le, T.-T. and Duc Bui, N. (2020), "Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model", Structures. 28, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013.   DOI
57 Yang, Y.-F. and Hou, C. (2015), "Behaviour and design calculations of recycled aggregate concrete-filled steel tube (RACFST) members", Mag. Concrete Res., 67(11), 611-620.   DOI
58 Tran, V.-L., Jang, Y. and Kim, S.-E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319.   DOI
59 Yang, L., Xie, W., Zhao, Y. and Zheng, J. (2020), "Linear elastic iteration technique for ultimate bearing capacity of circular CFST arches", J. Construct. Steel Res., 172 106135. https://doi.org/10.1016/j.jcsr.2020.106135.   DOI
60 Yang, Y.-F., Cao, K. and Wang, T.-Z. (2013), "Experimental behavior of CFST stub columns after being exposed to freezing and thawing", Cold Regions Sci. Technol., 89, 7-21. https://doi.org/10.1016/j.coldregions.2013.01.005.   DOI
61 Yang, Y.-F. and Ma, G.-L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin-Wall. Struct., 66 62-75. https://doi.org/10.1680/macr.14.00204   DOI
62 Yang, Y. and Han, L. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257. https://doi.org/10.12989/scs.2006.6.3.257.   DOI
63 Yang, Y. and Hou, R. (2012), "Experimental behaviour of RACFST stub columns after exposed to high temperatures", Thin-Wall. Struct., 59 1-10. https://doi.org/10.1016/j.tws.2012.04.017.   DOI
64 Younas, S., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustained loading", Steel Compos. Struct., 39(2), 159-170. https://doi.org/10.12989/scs.2021.39.2.159.   DOI
65 Zhu, J.-Y. and Chan, T.-M. (2018), "Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression", J. Construct. Steel Res., 147 457-467. https://doi.org/10.1016/j.jcsr.2018.04.030.   DOI
66 Yu, Z.-W., Ding, F.-X. and Cai, C. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Construct. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.   DOI
67 Zarringol, M., Thai, H.-T. and Naser, M.Z. (2021), "Application of machine learning models for designing CFCFST columns", J. Construct. Steel Res., 185 106856. https://doi.org/10.1007/s10462-020-09894-7.   DOI
68 Zhang, Q., Barri, K., Jiao, P., Salehi, H. and Alavi, A.H. (2021), "Genetic programming in civil engineering: advent, applications and future trends", Artific. Intell. Rev., 54(3), 1863-1885. https://doi.org/10.1007/s10462-020-09894-7.   DOI
69 Li, W., Luo, Z., Tao, Z., Duan, W.H. and Shah, S.P. (2017), "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures", Construct. Build. Mater., 146 571-581. https://doi.org/1010.1016/j.conbuildmat.2017.04.118.   DOI
70 Lee, S., Vo, T.P., Thai, H.-T., Lee, J. and Patel, V. (2021), "Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm", Eng. Struct., 238, 112109. https://doi.org/10.1016/j.engstruct.2021.112109.   DOI
71 Li, W., Luo, Z., Wu, C., Tam, V.W., Duan, W.H. and Shah, S.P. (2017), "Experimental and numerical studies on impact behaviors of recycled aggregate concrete-filled steel tube after exposure to elevated temperature", Mater. Des., 136 103-118. https://doi.org/10.1016/j.matdes.2017.09.057.   DOI
72 Liu, J.-Q., Han, L.-H. and Zhao, X.-L. (2018), "Performance of concrete-filled steel tubular column-wall structure subjected to ISO-834 standard fire: analytical behaviour", Thin-Wall. Struct., 129, 28-44. https://doi.org/1010.1016/j.tws.2018.03.027.   DOI
73 Nguyen, M.S. and Kim, S.-E. (2021), "A hybrid machine learning approach in prediction and uncertainty quantification of ultimate compressive strength of RCFST columns", Construct. Build. Mater., 302 124208. https://doi.org/10.1016/j.conbuildmat.2021.124208.   DOI
74 Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173 106938. https://doi.org/10.1016/j.compositesb.2019.106938.   DOI
75 Chen, Z., Liu, X. and Zhou, W. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., 27(4), 509-523. https://doi.org/10.12989/scs.2018.27.4.509.   DOI
76 Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.   DOI
77 Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193.   DOI
78 Chen, J., Wang, Y., Roeder, C.W. and Ma, J. (2017), "Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading", Eng. Struct., 130 23-40. https://doi.org/10.1016/j.engstruct.2016.09.046.   DOI
79 Konno, K., Sato, Y., Kakuta, Y. and Ohira, M. (1998), "The property of recycled concrete column encased by steel tube subjected to axial compression", Transact. the Japan Concrete Institute. 19 231-238.
80 Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16(1), 99-114. https://doi.org/10.1007/s13296-016-3009-9.   DOI
81 Code, P. (2005), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, British Standard Institution, London.
82 Ashrafian, A., Shahmansouri, A.A., Akbarzadeh Bengar, H. and Behnood, A. (2022), "Post-fire behavior evaluation of concrete mixtures containing natural zeolite using a novel metaheuristicbased machine learning method", Archive. Civil Mech. Eng., 22(2), 101. https://doi.org/10.1007/s43452-022-00415-7.   DOI
83 Ashteyat, A., Obaidat, Y.T., Murad, Y.Z. and Haddad, R. (2020), "Compressive strength prediction of lightweight short columns at elevated temperature using gene expression programing and artificial neural network", J. Civil Eng. Manage., 26(2), 189-199. https://doi.org/10.3846/jcem.2020.11931.   DOI
84 Avci-Karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583.   DOI
85 Avci-Karatas, C. (2021), "Modeling approach for estimation of ultimate load capacity of concrete-filled steel tube composite stub columns based on relevance vector machine", Nigde Omer Halisdemir Univ. J. Eng. Sci., 10(2), 615-626. https://doi.org/10.28948/ngumuh.759297.   DOI