• 제목/요약/키워드: Buckling Restrained Braces (BRB)

검색결과 46건 처리시간 0.023초

학교 건물 내진보강에서 철골가새 대비 비좌굴가새의 효율성 비교 연구 (Comparative Study of Effectiveness of Buckling-Restrained Braces Versus Steel Braces on Seismic Rehabilitation of School Buildings)

  • 이용근;김태완
    • 한국지진공학회논문집
    • /
    • 제28권6호
    • /
    • pp.325-334
    • /
    • 2024
  • Steel brace is a popular option among seismic rehabilitation methods for school buildings, but it has a weakness in that the section area must be large enough to prevent buckling, so stiffness and strength are highly increased locally, and foundation reinforcing is required. On the contrary, BRB has strength that the steel core may be negligible since buckling is restrained, so the increase of stiffness and strength is insignificant, and foundation reinforcing may not be required. This study compared the effectiveness of both reinforcing methods for the seismic performance of school buildings by conducting both pushover and nonlinear dynamic analyses. Steel brace and BRB reinforcing may not be satisfied by nonlinear dynamic analysis, even by pushover analysis. This result is due to the school buildings' low lateral resistance and high column shear strength ratio. Suppose BRB can be regarded as a general rehabilitation method. In that case, BRB reinforcing is a favorable and economical option for school buildings with low column shear strength ratio since it can better satisfy performance objectives than steel brace by pushover analysis with a small steel core and no foundation reinforcing.

Improving the behavior of buckling restrained braces through obtaining optimum steel core length

  • Mirtaheri, Masoud;Sehat, Saeed;Nazeryan, Meissam
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.401-408
    • /
    • 2018
  • Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.

횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석 (Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method)

  • 김유성;이준호;김기철
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Buckling-restrained brace with CFRP encasing: Mechanical behavior & cyclic response

  • Razavi, S. Ali;Kianmehr, Amirhossein;Hosseini, Abdollah;Mirghaderi, S. Rasoul
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.675-689
    • /
    • 2018
  • Buckling-restrained braces (BRBs) have received considerable attention in seismic design of various types of structures. Conventional BRBs are composed of steel core and surrounding steel tube filled with concrete. Eliminating the steel tube can be advantageous to BRB. In this study the idea of replacing the steel tube by CFRP layers in BRBs is proposed. The advantages of this type of BRB are mentioned, and its design criteria are introduced. The construction procedure of two BRB specimens is described. The specimens are uniaxially tested based on moderate, and severe earthquake levels and the performance of the specimens is investigated. The backbone curves resulted from the hysteresis curve are presented for the design proposes. The results of this study show that CFRP layers can effectively provide the expected performance of the encasing, and the proposed BRB can be considered a viable alternative to the conventional BRBs.

고강도강 비좌굴 가새의 구조성능 평가 (Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels)

  • 박만우;주영규;김명한;김지영;김상대
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.355-364
    • /
    • 2008
  • 비좌굴 가새는 좌굴을 방지하고 인장영역과 압축영역에서 안정적인 이력거동을 나타내기 위하여 개발되었다. 본 연구에서는 비좌굴 가새의 구조적 성능을 평가하고자 부재의 강도와 하중재하방법을 변수로 하여 실험을 수행하였다. 모든 실험체는 강종을 다르게 적용한 심재와 보강재로 구성되었다. 실험 결과에 의하면 고강도강을 심재로 적용시 연성도가 저하되어 AISC의 내진기준에서 제시하는 요구성능을 만족하지 못하였다. 그러나 고강도강을 심재로 적용시 일반강을 심재로 적용한 경우에 비해 최대내력은 상승하여 전체 에너지 소산 측면에서는 유사한 성능을 발휘하였다.

고강도강 비좌굴 가새의 구조성능 평가 (Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels)

  • 박만우;주영규;김명한;김지영;김상대
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.33-42
    • /
    • 2008
  • 비좌굴 가새는 좌굴을 방지하고 인장영역과 압축영역에서 안정적인 이력거동을 나타내기 위하여 개발되었다. 본 연구에서는 비좌굴 가새의 구조적 성능을 평가하고자 부재의 강도와 하중재하방법을 변수로 하여 실험을 수행하였다. 모든 실험체는 강종을 다르게 적용한 심재와 보강재로 구성되었다. 실험 결과에 의하면 고강도강을 심재로 적용시 연성도가 구성능을 만족하지 못하였다. 그러나 고강도강을 심재로 적용시 일반강을 심재로 적용한 경우에 비해 최대내력은 상승하여 전체 에너지 소산 측면에서는 유사한 성능을 발휘하였다.

공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가 (Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics)

  • 김유성;박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

공업용 플라스틱으로 보강된 비좌굴가새의 실험적 구조성능평가 (Experimental Structural Performance Evaluation of Precast-Buckling Restrained Brace Reinforced With Engineering Plastics)

  • 김유성;김기철;강주원;이준호
    • 한국공간구조학회논문집
    • /
    • 제20권3호
    • /
    • pp.43-52
    • /
    • 2020
  • In this study, the Buckling restrained braces reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. The proposed PC-BRB was fabricated to evaluate the reinforcement effect by carrying out a structural performance test and a full-scale two-layer frame test through cyclic loading test. As a result of PC-BRB's incremental and cyclic loading test, stable hysteresis behavior was achieved within the target displacement, and the compressive strength adjustment coefficient satisfied the recommendation. As a result of the real frame experiment, the strength of the reinforced specimen increased compared to the unreinforced specimen, and the ductility and energy dissipation increased.

Performance assessment of buckling restrained brace with tubular profile

  • Cao, Yan;Azar, Sadaf Mahmoudi;Shah, S.N.R.;Salih, Ahmed Fathi Mohamed;Thiagi, Tiana;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in nano research
    • /
    • 제8권4호
    • /
    • pp.323-333
    • /
    • 2020
  • In recent years, there has been an upsurge for the usage of buckling restrained braces (BRB) rather than ordinary braces, as they have evidently performed better. If the overall brace buckling is ignored, BRBs are proven to have higher energy absorption capacity and flexibility. This article aims to deliberate an economically efficient yet adequate type of all-steel BRB, comprised of the main components as in traditional ones, such as : (1) a steel core that holds all axial forces and (2) a steel restrainer tube that hinders buckling to occurr in the core; there is a more practical detailing in the BRB system due to the elimination of a filling mortar. An investigation has been conducted for the proposed rectangular-tube core BRB and it is hysteric behavioral results have been compared to previous researches conducted on a structure containing a similar plate core profile that has the same cross-sectional area in its core. A loss of strength is known to occur in the BRB when the limiting condition of local buckling is not satisfied, thus causing instability. This typically occurs when the thickness of the restrainer tube's wall is smaller than the cross-sectional area of the core plate or its width. In this study, a parametric investigation for BRBs with different formations has been performed to verify the effect of the design parameters such as different core section profiles, restraining member width to thickness ratio and relative cross-sectional area of the core to restrainer, on buckling load evaluation. The proposed BRB investigation results have also been presented and compared to past BRB researches with a plate profile as the core section, and the advantages and disadvantages of this configuration have been discussed, and it is concluded that BRBs with tubular core section exhibit a better seismic performance than the ones with a plate core profile.