• Title/Summary/Keyword: Buck-boost switching converter

Search Result 112, Processing Time 0.026 seconds

DAB Converter Based on Unified High-Frequency Bipolar Buck-Boost Theory for Low Current Stress

  • Kan, Jia-rong;Yang, Yao-dong;Tang, Yu;Wu, Dong-chun;Wu, Yun-ya;Wu, Jiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.431-442
    • /
    • 2019
  • This paper proposes a unified high-frequency bipolar buck-boost (UHFBB) control strategy for a dual-active-bridge (DAB), which is derived from the classical buck and boost DC/DC converter. It can achieve optimized current stress of the switches and soft switching in wider range. The UHFBB control strategy includes multi-control-variables, which can be achieved according to an algorithm derived from an accurate mathematical model. The design method for the parameters, such as the transformer turns ratio and the inductance, are shown. The current stress of the switches is analyzed for selecting an optimal inductor. The analysis is verified by the experimental results within a 500W prototype.

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

New Single-Phase AC-AC Converters With High-Reliability and Common-Ground Structure (새로운 공통접지 고신뢰성 AC-AC 전력변환기)

  • Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.446-453
    • /
    • 2021
  • This paper proposes enhanced single-phase pulse width modulation buck, boost, and buck-boost type ac-ac converters. The proposed converters, where input and output voltages share a common ground, require no isolated voltage sensor and have no leakage current problem. The commutation problem is solved with series-connected switching cell structures without using an additional RC snubber. In addition, with the use of the polarity of input voltage, switching patterns are determined so that the inductor currents can flow through switching devices during all operational modes. Two switches are always turned on during a half-period of the input voltage; thus, the switching loss is significantly reduced. Detailed analysis and experimental results are provided to verify the performance of the proposed converter.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).

MODELING OF QUANTUM CONVERTERS (Quantum 콘버어터의 모델링)

  • Joung, Gyu-B.;Rim, Chun-T.;Cho, Gyu.-H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.151-154
    • /
    • 1988
  • Quantum converters, a subset of resonant converters operating with optimal conditions are modeled. It is shown that series resonant converter(SRC) can be modeled as buck/boost converter with an equivalent inductor and parallel resonant converter(PRC) can be modeled as Cuk converter, with an equivalent capacitor. Also new resonant circuits with boost, buck-boost and Cuk converter characteristics are proposed. From these models, the quantum converters can be designed to be controlled with closed loop feedback, having many advantages such as low device switching stress, reliable high frequency operation and low EMI.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

A Study on Single Stage High Power Factor AC-DC Converter (단일 전력단 고역률 AC-DC 컨버터에 관한 연구)

  • Lee, Won-Jae;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.590-597
    • /
    • 2000
  • Design of single state AC-DC converter with high power factor for low level applications is proposed. The proposed converter is obtained from the integration of a buck-boost converter and the half-bridge DC-DC converter. This converter gives the good power factor correction low line current harmonic distortions and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method and synchronous rectifier. The modelling and detailed analysis for the proposed converter are performed. To verify the performance of the proposed converter a 100W converter has been designed

  • PDF

Parallel Operation of Trans-Z-Source Network Full-Bridge DC-DC Converter for Wide Input Voltage Range

  • Lee, Hyeong-Min;Kim, Heung-Geun;Cha, Hon-Nyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • This paper presents a novel transformer isolated parallel connected full-bridge dc-dc converter using recently developed trans-Z-source network. Unlike the traditional voltage -fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost function can be achieved and the converter reliability can be greatly improved. A 6 kW prototype dc-dc converter is built and tested to verify performances of the proposed converter.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

A Study on Bidirectional Boost-Buck Chopper Type AC Voltage Regulator

  • Isnanto, Isnanto;Choi, Woo-Seok;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.193-194
    • /
    • 2012
  • The bidirectional boost-buck chopper type AC voltage regulator is presented in this paper. The main characteristic of the AC chopper is the fact that it generates an output AC voltage larger or lower than the input AC one, depending of the instantaneous duty-cycle. Boost-buck chopper type AC voltage regulator, derived from the DC chopper modulated method, is a kind of direct AC-AC voltage converter and has many advantages: such as fast response speed, low harmonics and high power factor. It adopts high switching frequency AC chopper technique and can do wide range step less AC voltage regulation.

  • PDF