Browse > Article
http://dx.doi.org/10.6113/TKPE.2021.26.6.446

New Single-Phase AC-AC Converters With High-Reliability and Common-Ground Structure  

Kim, Jeonghun (School of Energy Engineering, Kyungpook National University)
Cha, Honnyong (School of Energy Engineering, Kyungpook National University)
Publication Information
The Transactions of the Korean Institute of Power Electronics / v.26, no.6, 2021 , pp. 446-453 More about this Journal
Abstract
This paper proposes enhanced single-phase pulse width modulation buck, boost, and buck-boost type ac-ac converters. The proposed converters, where input and output voltages share a common ground, require no isolated voltage sensor and have no leakage current problem. The commutation problem is solved with series-connected switching cell structures without using an additional RC snubber. In addition, with the use of the polarity of input voltage, switching patterns are determined so that the inductor currents can flow through switching devices during all operational modes. Two switches are always turned on during a half-period of the input voltage; thus, the switching loss is significantly reduced. Detailed analysis and experimental results are provided to verify the performance of the proposed converter.
Keywords
AC-AC converter; Common-ground; Commutation; Reliability; SC (Switching cell);
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. A. Khan, H. Cha, and H. F. Ahmed, "High efficiency single-phase AC-AC converters without commutation problem," IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5655-5665, Aug. 2016.   DOI
2 H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdioo, "Direct AC-AC resonant boost converter for efficient domestic induction heating applications," IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1128-1139, Mar. 2014.   DOI
3 R. Moghe, R. P. Kandula, A. Iyer, and D. Divan, "Losses in medium-voltage megawatt-rated direct ac/ac power electronics converters," IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3553-3562, Jul. 2015.   DOI
4 L. M. Tolbert, F. Z. Peng, F. H. Khan, and S. Li, "Switching cells and their implications for power electronic circuits," in Proc. IEEE 6th Int. Power Electron. Motion Control Conf., pp. 773-779, 2009.
5 P. L. Wei and T. A. Lipo, "A novel matrix converter topology with simple commutation," in Proc. IEEE IAS Annu. Meeting, pp. 1749-1754, 2001.
6 X. P. Fang, Z. M. Qian, and F. Z. Peng, "Single-phase Z-source PWM ac-ac converters," IEEE Power Electron. Lett., Vol. 3, No. 4, pp. 121-124, Dec. 2005.   DOI
7 B. H. Kwon, G. Y. Jeong, S. H. Han, and D. H. Lee, "Novel line conditioner with voltage up/down capability," IEEE Trans. Ind. Electron., Vol. 49, No. 5, pp. 1110-1119, Oct. 2002.   DOI
8 P. N. Enjeti and S. Choi, "An approach to realize higher power PWM AC controller," in Proc. 8th Annu. Conf. Appl. Power Electron. Expo., pp. 323-327, 1993.
9 F. Z. Peng, L. Chen, and F. Zhang, "Simple topologies of PWM ac-ac converters," IEEE Power Electron. Lett., Vol. 1, No. 1, pp. 10-13, Mar. 2003.   DOI
10 Y. Tang, S. Xie, and C. Zhang, "Z-source ac-ac converters solving commutation problem," IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2146-2154, Nov. 2007.   DOI
11 B. H. Kwon, B. D. Min, and J. H. Kim, "Novel commutation technique of AC-AC converters," Proc. IEE Elect. Power Appl., Vol. 145, No. 4, pp. 295-300, Jul. 1998.   DOI
12 A. A. Khan, H. Cha, and H. F. Ahmed, "A new reliable three-phase buck-boost AC-AC converter," IEEE Trans. Ind. Electron., Vol. 65, No. 2, pp. 1000-1010, Feb. 2018.   DOI
13 S. Bhowmik and R. Spee, "A guide to the application-oriented selection of AC/AC converter topologies," IEEE Trans. Power Electron., Vol. 8, No. 2, pp. 156-163, Apr. 1993.
14 H. Shin, H. Cha, H. Kim, and D. Yoo, "Novel single-phase PWM AC-AC converters solving commutation problem using switching cell structure and coupled inductor," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 2137-2147, Apr. 2015.   DOI
15 A. A. Khan, H. Cha, and H. F. Ahmed, "An improved single-phase direct PWM inverting buck-boost ac-ac converter," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5384-5393, Sep. 2016.   DOI
16 M. K. Nguyen, Y. C. Lim, and Y. J. Kim, "A modified single-phase quasi-Z-source AC-AC converter," IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 201-210, Jan. 2012.   DOI
17 L. He, S. Duan, and F. Z. Peng, "Safe-commutation strategy for the novel family of quasi-Z-source AC-AC converter," IEEE Trans. Ind. Inf., Vol. 9, No. 3, pp. 1538-1547, Aug. 2013.   DOI
18 R. H. Wilkinson, T. A. Meynard, and H. d. T. Mouton, "Natural balance of multicell converters: The general case," IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1658-1666, Nov. 2006.   DOI
19 F. Z. Peng, "Revisit power conversion circuit topologies-recent advances and applications," in Proc. IEEE 6th Int. Power Electr. Motion Control Conf., pp. 188-192, May 2009.
20 F. H. Khan, L. M. Tolbert, and F. Z. Peng, "Deriving new topologies of DC-DC converters featuring basic switching cells," in Proc. IEEE Workshop Comput. Power Electron., pp. 328-332, 2006.
21 M. R. Banaei, R. Alizadeh, N. Jahanyari, and E. S. Najmi, "An ac Z-source converter based on gamma structure with safe-commutation strategy," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1255-1262, Feb. 2016.   DOI