DOI QR코드

DOI QR Code

New Single-Phase AC-AC Converters With High-Reliability and Common-Ground Structure

새로운 공통접지 고신뢰성 AC-AC 전력변환기

  • Kim, Jeonghun (School of Energy Engineering, Kyungpook National University) ;
  • Cha, Honnyong (School of Energy Engineering, Kyungpook National University)
  • Received : 2021.07.26
  • Accepted : 2021.09.09
  • Published : 2021.12.31

Abstract

This paper proposes enhanced single-phase pulse width modulation buck, boost, and buck-boost type ac-ac converters. The proposed converters, where input and output voltages share a common ground, require no isolated voltage sensor and have no leakage current problem. The commutation problem is solved with series-connected switching cell structures without using an additional RC snubber. In addition, with the use of the polarity of input voltage, switching patterns are determined so that the inductor currents can flow through switching devices during all operational modes. Two switches are always turned on during a half-period of the input voltage; thus, the switching loss is significantly reduced. Detailed analysis and experimental results are provided to verify the performance of the proposed converter.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (NRF-2021R1A2C2007879)

References

  1. S. Bhowmik and R. Spee, "A guide to the application-oriented selection of AC/AC converter topologies," IEEE Trans. Power Electron., Vol. 8, No. 2, pp. 156-163, Apr. 1993.
  2. P. L. Wei and T. A. Lipo, "A novel matrix converter topology with simple commutation," in Proc. IEEE IAS Annu. Meeting, pp. 1749-1754, 2001.
  3. B. H. Kwon, G. Y. Jeong, S. H. Han, and D. H. Lee, "Novel line conditioner with voltage up/down capability," IEEE Trans. Ind. Electron., Vol. 49, No. 5, pp. 1110-1119, Oct. 2002. https://doi.org/10.1109/TIE.2002.803236
  4. P. N. Enjeti and S. Choi, "An approach to realize higher power PWM AC controller," in Proc. 8th Annu. Conf. Appl. Power Electron. Expo., pp. 323-327, 1993.
  5. F. Z. Peng, L. Chen, and F. Zhang, "Simple topologies of PWM ac-ac converters," IEEE Power Electron. Lett., Vol. 1, No. 1, pp. 10-13, Mar. 2003. https://doi.org/10.1109/LPEL.2003.814961
  6. X. P. Fang, Z. M. Qian, and F. Z. Peng, "Single-phase Z-source PWM ac-ac converters," IEEE Power Electron. Lett., Vol. 3, No. 4, pp. 121-124, Dec. 2005. https://doi.org/10.1109/LPEL.2005.860453
  7. Y. Tang, S. Xie, and C. Zhang, "Z-source ac-ac converters solving commutation problem," IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2146-2154, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909235
  8. B. H. Kwon, B. D. Min, and J. H. Kim, "Novel commutation technique of AC-AC converters," Proc. IEE Elect. Power Appl., Vol. 145, No. 4, pp. 295-300, Jul. 1998. https://doi.org/10.1049/ip-epa:19981869
  9. H. Shin, H. Cha, H. Kim, and D. Yoo, "Novel single-phase PWM AC-AC converters solving commutation problem using switching cell structure and coupled inductor," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 2137-2147, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2330351
  10. A. A. Khan, H. Cha, and H. F. Ahmed, "High efficiency single-phase AC-AC converters without commutation problem," IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5655-5665, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2494605
  11. A. A. Khan, H. Cha, and H. F. Ahmed, "An improved single-phase direct PWM inverting buck-boost ac-ac converter," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5384-5393, Sep. 2016. https://doi.org/10.1109/TIE.2016.2565461
  12. A. A. Khan, H. Cha, and H. F. Ahmed, "A new reliable three-phase buck-boost AC-AC converter," IEEE Trans. Ind. Electron., Vol. 65, No. 2, pp. 1000-1010, Feb. 2018. https://doi.org/10.1109/tie.2017.2733439
  13. H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdioo, "Direct AC-AC resonant boost converter for efficient domestic induction heating applications," IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1128-1139, Mar. 2014. https://doi.org/10.1109/TPEL.2013.2262154
  14. M. K. Nguyen, Y. C. Lim, and Y. J. Kim, "A modified single-phase quasi-Z-source AC-AC converter," IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 201-210, Jan. 2012. https://doi.org/10.1109/TPEL.2011.2157362
  15. M. R. Banaei, R. Alizadeh, N. Jahanyari, and E. S. Najmi, "An ac Z-source converter based on gamma structure with safe-commutation strategy," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1255-1262, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2415735
  16. R. Moghe, R. P. Kandula, A. Iyer, and D. Divan, "Losses in medium-voltage megawatt-rated direct ac/ac power electronics converters," IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3553-3562, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2350003
  17. L. He, S. Duan, and F. Z. Peng, "Safe-commutation strategy for the novel family of quasi-Z-source AC-AC converter," IEEE Trans. Ind. Inf., Vol. 9, No. 3, pp. 1538-1547, Aug. 2013. https://doi.org/10.1109/TII.2013.2245333
  18. R. H. Wilkinson, T. A. Meynard, and H. d. T. Mouton, "Natural balance of multicell converters: The general case," IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1658-1666, Nov. 2006. https://doi.org/10.1109/TPEL.2006.882951
  19. L. M. Tolbert, F. Z. Peng, F. H. Khan, and S. Li, "Switching cells and their implications for power electronic circuits," in Proc. IEEE 6th Int. Power Electron. Motion Control Conf., pp. 773-779, 2009.
  20. F. Z. Peng, "Revisit power conversion circuit topologies-recent advances and applications," in Proc. IEEE 6th Int. Power Electr. Motion Control Conf., pp. 188-192, May 2009.
  21. F. H. Khan, L. M. Tolbert, and F. Z. Peng, "Deriving new topologies of DC-DC converters featuring basic switching cells," in Proc. IEEE Workshop Comput. Power Electron., pp. 328-332, 2006.