• Title/Summary/Keyword: Buck-boost

Search Result 343, Processing Time 0.024 seconds

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Noninverting Buck-Boost AC-AC Converter (3상 PWM 비반번 Buck-Boost AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.116-118
    • /
    • 2005
  • In this paper, a three phase PWM noninverting Buck-Boost AC-AC converter for WCF applications is presented. The PWM noninverting Buck-Boost AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

A Study on PWM Buck-Boost AC-AC Converter for Improvement of Power Quality of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Buck-Boost AC-AC 컨버터에 대한 연구)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, a PWM Buck-Boost AC-AC converter for improvement of power quality of custom power is presented. The PWM Buck-Boost AC-AC converter is modelled by using circuit DQ transformation whereby the both static and dynamic characteristics are analyzed completely. Finally, the converter system is implemented with the design criteria and the experimental results show the validity of modelling and analysis.

  • PDF

Design of Buck-Boost DC-AC Inverter Using Microcontroller (마이크로컨트롤러를 이용한 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.45-51
    • /
    • 2009
  • The single phase buck-boost DC-AC inverter generates an alternating output voltage as the differential voltage of two DC-DC individual buck-boost converters. Two converters are driven with DC-biased and $180[^{\circ}]$ phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage does not depend on the direct input voltage. In this paper, single phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

Design of Three-phase Buck-Boost DC-AC Inverter (3상 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu;Jang, Eun-Sung;Choi, Hyun-Chil;Shin, Hwi-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2396-2401
    • /
    • 2009
  • The three-phase buck-boost DC-AC inverter generates three alternating output voltages as the differential voltage of three DC-DC individual buck-boost converters. Three converters are driven with three DC-biased and 1200 phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage can be larger or smaller than the value of the direct input voltage. In this paper, a three-phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

Dynamic Modeling and Controller Design of PWM Buck-Boost AC-AC Converter (PWM Buck-Boost AC-AC 컨버터의 동적 모델링 및 제어기 설계)

  • 최남섭;배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.749-753
    • /
    • 2003
  • This paper presents an output voltage regulation system using PWM Buck-Boost AC-AC converter for power qualify improvement of custom power. This paper proposes dynamic modeling of the system for control object and in addition, a controller design example. Therefore, system state equation is derived whereby the transfer function could be obtained. The paper shows a regulation controller for tracking the output voltage to the reference under specific operating point. Finally, this paper shows validity and practical applicability of the proposed modelling and system design by experimental results.

  • PDF

A New Transformer Isolated Buck-Boost DC-DC Converter (새로운 절연형 Buck-Boost DC-DC 컨버터)

  • Cha, Hon-Nyong;Lee, Jong-Pil;Lee, Kyung-Jun;Kim, Tae-Jin;Yoo, Dong-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.154-155
    • /
    • 2010
  • 본 논문은 최소의 스위칭 소자를 이용한 절연형 Full-Bridge (FB) buck-boost DC-DC 컨버터를 제안한다. 기존의 dual-bridge 방식을 이용한 buck-boost 컨버터와는 달리 본 논문에서 제안한 방식은 변압기 1차측에만 스위칭 소자를 사용하고 2차측에는 다이오드 정류기를 사용한다. 필요한 buck-boost 기능을 구현하기 위하여 입력단에 2개의 인덕터를 추가하여 2 phase interleaved 방식으로 동작을 한다. 500 W 의 prototype을 제작하여 본 논문에서 제안한 방식의 타당성을 실험적으로 검증 한다.

  • PDF

Design of Micro Energy Harvesting System using Thermoplastic Polyurethane and Buck-boost Converter (열가소성 폴리우레탄과 벅-부스트 컨버터를 이용한 마이크로 에너지 포집시스템 설계)

  • Son, Young-Dae;Kim, Gue-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.560-565
    • /
    • 2011
  • This paper proposes the design of micro energy harvesting system by using thermoplastic polyurethane(TPU), which harvests electric energy from the kinetic energy of pedestrian and drives the desired load, and applied it to the self-generating shoes. Also, we designed the buck-boost converter in discontinuous conduction mode(DCM) which functions as a resistor emulator(RE) such that converter's average input current is proportional to input voltage, and it results in transfer of maximum power to buck-boost converter according to control behavior that converter's input resistance is matched with TPU's internal resistance. Therefore, this paper confirms the validity of proposed control scheme and possibility of application for self-generating shoes, from the obtained characteristic of designed micro energy harvesting system by using a TPU and buck-boost converter in DCM.

Digital Control Techniques for Bidirectional CRM Buck/Boost Converter (양방향 경계모드 벅/부스트 컨버터의 디지털 제어기법)

  • Sang-Youn Lee;Woo-Seok Lee;Il-Oun Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • This paper presents the digital control techniques of a bidirectional CRM(critical-conduction mode) buck(boost) converter, a dead-time design method that optimizes ZVS(zero-voltage switching) and valley-switching operation, and a switching-frequency limitation that ensures stable converter operation. To verify the feasibility of the design, a Si-MOSFET-based bidirectional CRM buck(boost) converter is built with 260-430 V input, 160-240 V output, and 1.0 kW rated capacity. The bidirectional CRM converter achieves an efficiency of up to 99.6% at buck mode and 98.7% at boost mode under rated load conditions.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.