• Title/Summary/Keyword: Buck-PFC

Search Result 40, Processing Time 0.022 seconds

Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method (인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계)

  • Yoon, Seong-Sik;Choi, Hyun-Eui;Kim, Tae-Woo;Ahn, Ho-Kyun;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Optimal Design Method of Power Factor Correction Circuit with Decoupling Circuit of 3.3kW On-board Charger for High Power Density (3.3 kW 탑재형 충전기의 전력 밀도 향상을 위한 디커플링 기법이 적용된 PFC 회로 최적 설계 방안)

  • Bae, Jeong Hyun;Noh, Tae-Won;Koo, Geun Wan;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.61-63
    • /
    • 2019
  • 본 논문은 3.3 kW 전기자동차용 탑재형 충전기의 전력 밀도 향상을 위해 디커플링 기법이 적용된 PFC (Power factor correction) 회로의 초치적 설계 방안을 제안한다. 최적 설계를 위하여 buck-boost 컨버터 형태의 디커플링 회로 동작 원리를 기반으로 스위칭 주파수에 따른 PFC 회로의 손실과 부피를 분석하고 최적 설계점을 도출한다.

  • PDF

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

Study on 3-Phase Isolated PFC Converter for the Electric Vehicle Charger (전기자동차 충전기를 위한 3상 절연형 PFC 컨버터의 회로 연구)

  • Kim, Yoon-Jae;Lee, Jun-Young;Lee, Il-Oun;Lee, Byung-Kwon;Choi, Seung-Won;Hong, Young-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.404-413
    • /
    • 2017
  • This paper suggests an isolated PFC converter for electric vehicle (EV) chargers with wide-output voltage range. The proposed converter is based on voltage-fed full-bridge structure. All the harmonic and output controls are performed by secondary and primary switches are only operated under a fixed frequency with 50% duty-ratio. In addition, harmonic modulation technique is adopted to obtain a near unity power factor without input current monitoring. The feasibility of the proposed charger has been verified with a 10-kW prototype.

Development of Dimming control system for 70W CDM Lamp by Electronic Ballast of DBI structure (DBI 구조의 전자식 안정기를 이용한 70W CDM 램프용 조광제어 시스템 개발)

  • Choe, Wang-Seop;Yoo, Jin-Wan;Park, Chong-Yun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.67-73
    • /
    • 2011
  • Ceramic metal halide lamps have been widely used due to long lifetime, high luminous efficiency and good colour rendering. In this paper, we developed dimming control system of electronic ballast for 70W ceramic metal halide lamp by using 1-10V interface. The proposed electronic ballast is consists of EMI filter, Full-wave rectifier, Active PFC, DBI(Dual Buck Inverter), Igniter and control circuit.It enables to supply both low-frequency rectangular wave voltage and current to the lamp by using DBI(Dual Bcuk Inverter) structure. By using 1-10V interface, the system that able to dimming the lamp is demonstrated by P-spice simulation and experimental results.

  • PDF

Soft-Switching Buck-Boost Converter with High Power Factor for PAM Inverter System

  • K. Taniguchi;T. Watanabe;T. Morizane;Kim, N. ura;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.264-269
    • /
    • 1998
  • A proposed soft-switching buck-boost PWM converter has a lot of advantages, Viz., electric isolation, a high power factor, low switching losses, low EMI noise, reduction of the voltage and current stresses, etc. In a new PFC converter, the switching device is replaced by the loss-less snubber circuit to achieve the zero voltage switching (ZVS) at the maximum current. However, the charging current of the capacitor in the loss-less snubber circuit distorts the input current waveforms. To improve the input current waveform, a new duty factor control method is proposed in this paper.

  • PDF

The Optimal Compensation Gain Algorithm Using Variable Step for Buck-type Active Power Decoupling Circuits (벅-타입 능동 전력 디커플링을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘)

  • Baek, Ki-Ho;Kim, Seung-Gwon;Park, Sung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • This work proposes a simple control method of a buck-type active power decoupling circuit that can minimize the ripple values in the dc link voltage. The proposed method utilizes a simplified duty calculation method and an optimal compensation gain tracking algorithm with variable-step approach. Thus, the dc link voltage ripple can be effectively reduced through the proposed method along with rapid response in tracking the optimum compensation gain. Moreover, the proposed method has better dynamic responses in the load fluctuation or abnormal situation. MATLAB/Simulink simulation and hardware-in-the-loop-simulation(HILS)-based experimental results are presented to validate the effectiveness of the proposed control method.

Design of Electronic Ballast for 35[W] Ceramic Metal Halide Lamp by DBI Structure (DBI 구조를 이용한 35[W] 세라믹 메탈 할라이드 램프용 전자식 안정기의 설계)

  • Park, Chong-Yun;Choe, Wang-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.1-7
    • /
    • 2010
  • Ceramic metal halide lamps have been widely used due to long lifetime, high luminous efficiency and good colour rendering. 35[W] ceramic metal halide lamps has very different characteristics between ignition state and steady state. The developed electronic ballast is satisfied to both ignition state and steady state characteristics by using a micro-controller. The proposed electronic ballast is consists of EMI filter, Full-wave rectifier, Active PFC, DBI(Dual Buck Inverter), Igniter and control circuit. It enables to supply both low-frequency rectangular wave voltage and current to the lamp by using DBI(Dual Bcuk Inverter) structure.

Design of Dimmable electric ballast for the Ceramic metal halide lamp (Ceramic 메탈 헬라이드 램프용 Dimming 전자식 안정기 개발)

  • Lim, Ki-Seung;Choe, Hyeon-Hui;Sin, Dong-Seok;Park, Chong-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1947-1953
    • /
    • 2009
  • Metal halide (MH) lamps have been largely used due to high luminous efficiency, good color rendering, and long life. Since the metal halide lamps have problems of high ignition voltage and acoustic resonance. Thus, the design of ballast is very difficult for engineers. This paper proposes prototype of electric ballast in order to solve above two problems. The proposed electric ballast is consisted of EMI filter, full wave rectifier circuit, active PFC, DBI(Dual Buck Inverter), dimming circuit and ignitor circuit. The DBI supplies both rectangular voltage and current to the lamp. As the result of the experiment, the acoustic resonance was eliminated and the ignitor circuit was designed to generate high ignition voltage than 5kV. It makes the dimming circuit possible to control the lamp power in range between 230W and 350W.