• Title/Summary/Keyword: Bubble model

Search Result 305, Processing Time 0.024 seconds

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.

A Facility Design Model for 1300 Capacity School Foodservice with Adjacency and Bubble Diagrams (근접요구도와 버블다이어그램을 적용한 1300식 규모의 학교급식 시설 설계 모델)

  • Jang, Sun-hee;Chang, Hye-Ja
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.1
    • /
    • pp.98-112
    • /
    • 2011
  • This study aimed to suggest a 1300 scale of a middle school foodservice facility floor plan which was compliant to the principle of HACCP, as well as ensuring food and work safety, and the flow of personnel and food materials. which consisted of 46 nutrition teachers and 6 experts, responded with a questionnaire on the relationship of functional area and space. Using their opinions, key principles for the design of the facility were single direction movement of food materials, customers and workers; minimization of the cross-contamination through the separation of functional space; and securement of customer-focused efficiency; staff-centered convenience and efficiency; and work and food safety. After the completion of an adjacency diagram, bubble diagram and program statement, the functional areas of a 1300 scale middle school food-service facility were allocated as follows: $9.9\;m^2$ for the receiving area, $56.1\;m^2$ for the pre-preparation area, $10.5\;m^2$ for the food storage area, $6.0\;m^2$ for the supplies storage area, $97.8\;m^2$ for the cooking area, $33.6\;m^2$ for the service area, $52.5\;m^2$ for dish washing area, cafeteria $410.5\;m^2$, $4.5\;m^2$ for the front room, for a total of $725.8\;m^2$. Expert groups have pointed to limitations within this model as there are no windows in the office for the influx of fresh outside air and a need for the straight line installation of steam-jacket and frying kettles on the sides of windows. This study can be useful as the guidelines for estimating the investment cost of the facility and placing the placement of functional areas and equipment in the renovation of the facility. It can be also useful data for a methodology of foodservice facility design.

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.

COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL (익형의 층류박리를 동반한 천이 유동 해석)

  • Jeon, S.E.;Park, S.H.;Kim, S.H.;Byun, Y.H.;Lee, J.W.;Jung, K.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

Analysis of the foaming behavior in pultrusion process of phenolic foam composites (발포 복합재료 Pultrusion 공정에서의 발포 거동 해석)

  • Yun, Myung-Seok;Jung, Jae-Won;Lee, Woo-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.130-133
    • /
    • 2005
  • An experimental and theoretical study was carried out to estimate the foaming characteristics in the pultrusion process of phenolic foam composite. For the experimental study, a lab-scale pultrusion apparatus was constructed. Methylene chloride(CH2Cl2) was used as a physical blowing agent, glass fiber roving was used as reinforcement and the polymer used was a resol type phenolic resin. Pultruded products were observed to count bubble size by a SEM(Scanning Electron Microscopy). For the theoretical study, a model for bubble growth in a gradually hardening resin was considered and solved for a few foaming conditions.

  • PDF

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Experimental Study on Flow Noise Generated by Axi-symmetric Boundary Layer (II) - Forced Transition on an Axi-symmetric Nose and Radiated Sound - (축대칭 물체의 경계층 유동소음에 대한 실험적 연구(II) - 전두부 천이제어 및 방사소음 -)

  • Lee, Seung-Bae;Kim, Hooi-Joong;Kwon, O-Sup;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1326-1334
    • /
    • 2000
  • The oscillatory excitation with a Strouhal number of 2.65 ncar the stagnation zone of hemispherical nose model was employed to control the laminar separation bubble and the transition to turbulence. The effects of oscillatory excitation upon the separation bubble and the transition were addressed in terms of kurtosis/skewness and time-frequency analyses. The measured noise spectrum of radiated sound from the turbulent boundary layer on the axi-symmetric infinite cylinder is compared with that by Sevik's wave-number white approximations. The noise sources in TBL on axi-symmetric cylinder and the caling of their far-field sound are also discussed.

A Study on Bubbles in The RIM Process (림성형 공정의 기포에 관한 연구)

  • 양화준;강대원;강영중;김성준;장태식;이일엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.303-306
    • /
    • 2001
  • To shorten the delivery time for new products, a lot of prototype plastic parts manufacturing technologies have been developed including injection molding, vacuum casting, thermal forming and so on. Among them, RIM is becoming one of a important soft tooling methods to produce prototype and mass production parts within short time. Further more, as the rapid prototyping technology based tooling methods are playing an important role in prototype manufacturing industry, the utility of the RIM is increasing. But few analyses and mold design techniques have been developed so far due to its chemical and mechanical complexity during the packing and curing process. This research suggests mold gate design criteria to prevent bobbles from molded parts through simplified mathematical model and change of bubble sizes according to the geometry of the molded parts through experiments. Also this study shows the differences of bobble generation mechanism between RIM and injection molding.

  • PDF

Experimental modelling of tunnel smoke flow using a fine-bubble technique (미세수소기포를 이용한 터널내의 연기거동 모사)

  • Park, Won-Hee;Jang, Yong-Jun;Kim, Dong-Hyeon;Park, Seung-Yil
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.444-447
    • /
    • 2007
  • The free flow of fine bubbles generated by electrolysis and smoke flow in a space enclosed by fire were recently found to show the same tendency thus leading to the introduction of a research technique. The research experimentally models smoke diffusion and flow in parallel and slanted tunnels using the fine hydrogen bubbles generated by electrolysis in a water tank. Visualization laser with wavelength of 532nm and output power of 1000mW is used to visualize effectively the cross section of fine hydrogen bubble flows generated in a model tunnel.

  • PDF