UNIQUENESS OF THE ELEMENTARY PHYSICS DRIVING HETEROGENEOUS NUCLEATE BOILING AND FLASHING

  • Published : 2006.02.01

Abstract

Boiling and flashing are driven by the same physics for nucleation, bubble growth, departure etc. An adequate model of boiling has to describe the flashing too. The subject of this paper is to prove this uniqueness of the elementary physics driving the both processes.

Keywords

References

  1. Arefeva EI and Aladev IT (July 1958) O wlijanii smatchivaemosti na teploobmen pri kipenii, Injenerno - Fizitcheskij Jurnal, in Russian, vol 1 no 7 pp 11-17
  2. Avdeev AA, Maidanik VN, Selesnev LI and Shanin VK (1977) Calculation of the critical flow rate with saturated and subcooled water flashing through a cylindrical duct, Teploenergetika, vol 24 no 4 pp 36-38
  3. Borishanskii, V, Bobrovich G, Minchenko F (1961) Heat transfer from a tube to water and to ethanol in nucleate pool boiling, Symposium of Heat Transfer and Hydraulics in Two-Phase Media, Kutateladze SS (ed) Gosenergoizdat, Moscow, pp 75-93
  4. Brauer H (1971) Stoffaustausch, Verlag Sauerlander
  5. Chen JC (July 1966) Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. & Eng. Chem. Progress Design and Development, vol 5 no 3 pp 322- 329 https://doi.org/10.1021/i260019a023
  6. Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser., no 92 vol 65 pp 211-213
  7. Cornwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf. Heat Transfer 1978 - Toronto, vol 1 pp 157-161
  8. Faggiani S, Galbiati P and Grassi W (1981) Active site density, bubble frequency and departure on chemically etched surfaces, La Termotechnica, vol 29 no 10 pp 511-519
  9. Forster HK, Zuber N (1955) Dynamics of vapor bubbles and boiling heat transfer, AIChE J., vol 1 no 4 pp 531-535 https://doi.org/10.1002/aic.690010425
  10. Fritz W (1935) Berechnung des maximalen Volumens von Dampfblasen, Phys. Z., vol 36 no 11 pp 379-384
  11. Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser., no 30 vol 30 pp 39-48
  12. Gaertner RF (1963) Distribution of active sites in the nucleate boiling of liquids, Chem. Eng. Prog. Symp. Series, no 41 vol 59 pp 52-61
  13. Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, Transaction of the ASME, Journal of Heat Transfer, vol 87 pp 17 - 29 https://doi.org/10.1115/1.3689038
  14. Han CY, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling, Part I, Bubble initiation, growth and departure, Int. J. Heat Mass Transfer, vol 8 pp 887-904 https://doi.org/10.1016/0017-9310(65)90073-6
  15. Hutcherson MN, Henry RE and Wollersheim DE (Nov. 1983) Two-phase vessel blowdown of an initially saturated liquid - Part 2: Analytical, Trans. ASME, J. Heat Transfer, vol 105 pp 694-699 https://doi.org/10.1115/1.3245650
  16. Jakob M and Fritz W (1931) Versuche ueber den Verdampfungsvorgang, Forsch. Ing. - Wes., vol 2 p 435 https://doi.org/10.1007/BF02578808
  17. Jakob M (1932) Kondensation und Verdampfung, Zeitschrift des Vereins Deutscher Ingenieure, vol 76 no 48 pp 1161-1170
  18. Jakob M and Linke W (1933) Der Warmeubergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75-81 https://doi.org/10.1007/BF02717048
  19. Jakob M (1949) Heat transfer, Wiley, New York, vol 1 ch 29
  20. Jens WH and Lottes PA (1951) Analysis of heat transfer, burnout, pressure data and density data for high pressure water. USAEC Rep. ANL-4627
  21. Johov KA (1969) Nucleations number during steam production, Aerodynamics and Heat Transfer in the Working Elements of the Power Facilities, Proc. CKTI, Leningrad, in Russian, vol 91 pp 131- 135
  22. Jones OC (1992) Nonequilibrium phase change --1. Flashing inception, critical flow, and void development in ducts, in boiling heat transfer, Lahey RT Jr (ed) Elsevier Science Publishers B.V., pp 189 - 234
  23. Jones OC (1992) Nonequilibrium phase change --2. Relaxation models, general applications, and post heat transfer, Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 447-482
  24. Judd RL, Hwang KS (Nov. 1976) A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation, Transaction of the ASME, Journal of Heat Transfer, vol 98 pp 623-629 https://doi.org/10.1115/1.3450610
  25. Kolev NI (1994) The influence of mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, vol 8 pp 167-174 https://doi.org/10.1016/0894-1777(94)90044-2
  26. Kolev NI (1995) How accurate can we predict nucleate boiling, Experimental Thermal and Fluid Science, Experimental Thermal and Fluid Science, vol 10 pp 370-378 https://doi.org/10.1016/0894-1777(94)00097-R
  27. Kocamustafaogullari G and Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 pp 1377-1389 https://doi.org/10.1016/S0017-9310(83)80069-6
  28. Kutateladse SS (1954) A hydrodynamic theory of changes in the boiling process under free convection conditions, Izv. Akad. Nauk SSSR, Otd. Tech. Nauk, vol 4 pp 529 - 536, 1951; AEC-tr-1991
  29. Kutateladse SS (1962) Basics on heat transfer theory, in Russian, Moscow, Mashgis, p 456
  30. Kurihara HM, Myers JE (March 1960) The effect of superheat and surface roughness on boiling coefficients, AIChE Journal, vol 6 no 1 pp 83-91 https://doi.org/10.1002/aic.690060117
  31. Labuntsov DA (1974) State of the art of the nucleate boiling mechanism of liquids, Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, in Russian, pp 98-115
  32. Labuntsov DA (1963) Approximate theory of heat transfer by developed nucleate boiling (Russ.), Izvestiya AN SSSR, Energetika i transport no 1
  33. Miheev MA and Miheeva IM (1973) Basics of heat transfer, Moskva, Energija, in Russian, p 320
  34. Mikic BB, Rohsenow WM (May 1969) A new correlation of pool-boiling data including the effect of heating surface characteristics, Transactions of the ASME, J. Heat Transfer, vol 91 pp 245-250 https://doi.org/10.1115/1.3580136
  35. Nishikawa K, Fujita Y, Uchida S, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat and Mass Transfer, vol 27 no 9 pp 1559-1571 https://doi.org/10.1016/0017-9310(84)90268-0
  36. Pohlhausen K (1921) Zur nahrungsweisen Integration der Differentialgleichung der laminaren Grenzschicht, Z. angew. Math. Mech., vol 1 pp 252-268 https://doi.org/10.1002/zamm.19210010402
  37. Rallis CJ, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051-1068 https://doi.org/10.1016/0017-9310(64)90029-8
  38. Riznic J and Ishii M (1989) Bubble number density and vapor generation in flashing flow, Int. J. Heat Mass Transfer, vol 32 pp 1821-1833 https://doi.org/10.1016/0017-9310(89)90154-3
  39. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, vol 74 pp 969-975
  40. Siegel R and Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, AIChE Journal, vol 10 no 4 pp 509-517 https://doi.org/10.1002/aic.690100419
  41. Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Transactions of the ASME, Journal of Heat Transfer, vol 100, pp 56-62 https://doi.org/10.1115/1.3450504
  42. Thom IRS et. al. (1966) Boiling in subcooled water during up heated tubes or annuli. Proc. Instr. Mech. Engs., vol 180 3C pp 1965-1966
  43. Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rate in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463-1470 https://doi.org/10.1016/0017-9310(66)90142-6
  44. Vachon RI, Tanger GE, Davis DL, Nix GH (May 1968) Pool boiling on polished chemically etched stainless-steel surfaces, Transactions of ASME, Journal of Heat Transfer, vol 90 pp 231-238 https://doi.org/10.1115/1.3597486
  45. Vachon RI, Nix GH, Tanger GH (May 1968) Evalution of the constants for the Rohsenow pool - boiling correlation, Transactions of the ASME Journal of Heat Transfer, vol 90 pp 239-247 https://doi.org/10.1115/1.3597489
  46. van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USA
  47. von Karman T (1921) Uber laminare und turbulente Reibung, Z. angew. Math. Mech., vol 1 pp 233-252 https://doi.org/10.1002/zamm.19210010401
  48. Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659-669 https://doi.org/10.1115/1.2910737
  49. Wiebe JR (1970) Temperature profiles in subcooled nucleate boiling, M. Eng. thesis, Mechanical Engineering Department, McMaster University, Canada
  50. Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating Surface, Mem. Fac. Engng; Kyushu Univ, vol 15 p 97
  51. Yang JK, Weisman J (1991) A phenomenological model of subcooled flow boiling in the detached bubble region, Int. J. Multiphase Flow, vol 17 no 1 pp 77 94 https://doi.org/10.1016/0301-9322(91)90071-A
  52. Zuber N (April 1958) On the stability of boiling heat transfer, Transactions of the ASME, vol 80 pp 711-720
  53. Zuber N and M Tribus (1958) Further remarks on the stability of boiling heat transfer, report 58-5, Department of Engineering, University of California, Los Angeles
  54. Zuber N (1959) Hydrodynamic aspect of boiling heat transfer, U.S. Atomic Energy Commission Rept., AECU - 4439, Tech. Inf. Serv. Oak Ridge, Tenn
  55. Zuber N (Jan. 1960) Hydrodynamic aspect of nucleate pool boiling, Part I - The region of isolated bubbles, Research Laboratory Ramo - Wooldridge, RW-RL-164, 27
  56. Zuber N, Tribus M and Westwater JW (1961) The hydrodynamic crisis in pool boiling of saturated and subcooled liquids, International Developments in Heat Transfer, Proc. Int. Heat Transfer Conf., Boulder, Colorado, Part 2, no 27 pp 230-236
  57. Zuber N (1963) Nucleate boiling, The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Transfer, vol 6 pp 53-78 https://doi.org/10.1016/0017-9310(63)90029-2
  58. Borishanskii V, Kozyrev A and Svetlova L (1964) Heat transfer in the boiling water in a wide range of saturation pressure, High Temperature, vol 2 no 1 pp 119-121
  59. Kolev NI (2002, 2004) Multiphase Flow Dynamics, Vol. 1 Fundamentals, 2nd ed., with 114 Figures and CD-ROM Springer, Berlin, New York, Tokyo, ISBN 3-540-2206-0, see the content in http://www.springeronline.com/east/3-540-22106-9
  60. Kolev NI (2002, 2004) Multiphase Flow Dynamics, Vol. 2 Thermal and mechanical interactions, 2nd ed. with 81 Figures, Springer, Berlin, New York, Tokyo, ISBN 3-540-22107-7, see the content in http://www.springeronline.com/east/3-540-22107-7
  61. Hsu YY, Graham RW (1976) Transport processes in boiling and two - phase systems, Hemisphere Publishing Corporation, Washington - London, Mc Graw - Hill Book Company, New York
  62. Iida Y, Kobayasi K (1970) An experimental investi gation on the mechanism of pool boiling phenomena by a probe method, 4th Int. Heat Transfer Conf., Paris - Versailles, vol 5 no 3B13 pp 1-111
  63. Klausner JF, Mei R, Bernard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling, Int. J. of Heat and Mass Transfer, vol 36 no 3 pp 651-662 https://doi.org/10.1016/0017-9310(93)80041-R
  64. Kolev NI (October 5-8 1993) IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixt International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France
  65. Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147-156
  66. Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, Elsevier, vol 6 pp 211-251 https://doi.org/10.1016/0894-1777(93)90065-Q
  67. Koumoutsos N, Moissis R, Spyridonos A (May 1968) A study of bubble departure in forced-convection boiling, Journal of Heat Transfer, Transactions of the ASME pp 223-230?
  68. van Krevelen DW, Hoftijzer PJ (1950) Studies of gas- bubble formulation, calculation of interfacial area in bubble contactor, Chem. Eng. Progr. Symp. Ser., vol 46 no 1 pp. 29-35
  69. Levy S (1967) Forced convection subcooled boiling prediction of vapor volume fraction, Int. J. Heat Mass Transfer, vol 10 pp 951-965 https://doi.org/10.1016/0017-9310(67)90071-3
  70. Moalem D, Yijl W, van Stralen SJD (1977) Nucleate boiling at a liquid-liquid interface, letters heat and mass transfer, vol 4 pp 319-329 https://doi.org/10.1016/0094-4548(77)90121-7
  71. Roll JB, Mayers JC (July 1964) The effect of surface tension on factors in boiling heat transfer, A.I.Ch.E.Journal, pp 330-344
  72. Semeria RF (1962) Quelques resultats sur le mechanisme de l'ebullition, 7, J. de l'Hydraulique de la Soc. Hydrotechnique de France
  73. van Stralen SJD, Sluyter WM, Sohal MS (1975) Bubble growth rates in nucleate boiling of water at subatmospheric pressures, Int. J. Heat and Mass transfer, vol 18 pp 655-669 https://doi.org/10.1016/0017-9310(75)90277-X
  74. van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USA
  75. Zeng LZ, Klausner JF, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems - 1. Pool boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2261 - 2270 https://doi.org/10.1016/S0017-9310(05)80111-5
  76. Zeng L Z, Klausner JF, Bernard DM, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems - 2. Flow boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2271 - 2279 https://doi.org/10.1016/S0017-9310(05)80112-7
  77. Ruckenstein E (1961) A physical model for nucleate boiling heat transfer from a horizontal surface, Bul. Institutului Politech. Bucaresti, vol. 33, no. 3. pp. 79-88, 1961
  78. Ruckenstein E A physical model for nucleate boiling heat transfer from a horizontal surface, Appl. Mech. Rev., vol. 16, Rev. 6055, 1963
  79. Voloshko AA and Vurgaft AV (November 1970) Dynamics of vapor-bubble break off under free-convection boiling conditions, Heat Transfer-Soviet Research, vol 2 no 6 pp 136-141
  80. Golorin VS, Kol'chugin BA, and Zakharova EA (1978) Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motionpicture photog-raphy, Heat Transfer-Sov. Res., vol 10 no 4 pp 79-98
  81. Kutateladze SS and Gogonin II (1979) Growth rate and detachment diameter of a vapour bubble in free convection boiling of saturated liquids, High Temperature, vol 17 pp 667-671
  82. Unal HC (1976) Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 $MN/m^2$, Int. J. Heat Mass Transfer vol 19 pp 643-649 https://doi.org/10.1016/0017-9310(76)90047-8
  83. Jensen MK and Memmnel GJ (1986) Evaluation of Bubble Departure Diameter Correlations, Proc. Eighth Int. Heat Transf: Conf., vol 4 pp 1907-1912
  84. Labuntsov DA, Kol'chugin VA, Golovin VS et al (1964) Teplofiz. Vys. Temp., vol 3 pp 446-453
  85. Forschuetz L, Chao BT (May 1965) On the mechanics of vapor bubble collapse, Transactions of the ASME, Journal of Heat Transfer, pp 209-220
  86. Avdeev AA (1986) Growth and condensation velocity of steam bubbles in turbulent flow, Teploenergetika, in Russian, vol 1 pp 53 - 55
  87. Zuber N (1961) The dynamics of vapor bubbles in non uniform temperature fields, Int. J. Heat Mass Transfer, vol 2 pp 83-98 https://doi.org/10.1016/0017-9310(61)90016-3
  88. Abuaf N, Wu BJC, Zimmer GA and Saha P (June 1981) A study of nonequilibrium flashing of water in a converging diverging nozzle, Vol.1 Experimental, vol 2 Modeling, NUREG/CR-1864, BNL-NUREG-51317
  89. Ahmad SY (1970) Axial distribution of bulk temperature and void fraction in heated channel with inlet subcooling, J. Heat Transfer, vol 92 p 595 https://doi.org/10.1115/1.3449729
  90. Blinkov VN, Jones OC and BI Nigmatulin, Nucleation and Flashing in Nozzles - 2. Comparison with Experiments Using a Five - Equation Model for Vapor Void Development, Int. J. Multiphase Flow, vol 19 no 6 pp. 965-986 https://doi.org/10.1016/0301-9322(93)90072-3
  91. Edwards AR, O'Brien TP (1970) Studies of phenomena connected with the depressurization of water reactors, The Journal of The British Nuclear Energy Society, vol 9 nos 1-4 pp 125-135
  92. Kaishev R and Stranski IN (1934) Z. Phys. Chem., vol 26 p 317
  93. Kellner H, Gissler (07.02.1984) Programmsystem SAPHYR: Anwendungsbeispiel II, Notiz Nr.70.02748.4, Interatom GmbH
  94. Kolev NI (1995) The Code IVA4: Nucleation and flashing model, Kerntechnik, vol 60, no 6 pp 157-164. Also in: (Apr. 3-7, 1995) Proc. Second Int. Conf. On Multiphase Flow, Kyoto; (Aug.13-18, 1995) ASME & JSME Fluid Engineering Conference International Symposium on Validation of System Transient Analysis Codes, Hilton Head (SC) USA; (October 9-11, 1995) Int. Symposium on Two-Phase Flow Modeling and Experimentation, ERGIFE Place Hotel, Rome, Italy
  95. Mikic BB, Rohsenow WM and Griffith P (1970) On bubble growth rates, Int. J. Heat Mass Transfer, vol 13 pp 657-666 https://doi.org/10.1016/0017-9310(70)90040-2
  96. Shin TS and Jones OC (1993) Nucleation and flashing in nozzles - 1, A distributed nucleation model, Int. J. Multiphase Flow, vol 19 no 6 pp 943-964 https://doi.org/10.1016/0301-9322(93)90071-2
  97. Skripov VP et al. (1980) Thermophysical properties of liquids in metastable state, Moskva, Atomisdat, in Russian
  98. Volmer M (1939) Kinetik der Phasenbildung, Dresden und Leipzig, Steinkopf