• Title/Summary/Keyword: Brouwer

Search Result 23, Processing Time 0.023 seconds

BROUWER DEGREE FOR MEAN FIELD EQUATION ON GRAPH

  • Liu, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1305-1315
    • /
    • 2022
  • Let u be a function on a connected finite graph G = (V, E). We consider the mean field equation (1) $-{\Delta}u={\rho}\({\frac{he^u}{\int_Vhe^ud{\mu}}}-{\frac{1}{{\mid}V{\mid}}}\),$ where ∆ is 𝜇-Laplacian on the graph, 𝜌 ∈ ℝ\{0}, h : V → ℝ+ is a function satisfying minx∈V h(x) > 0. Following Sun and Wang [15], we use the method of Brouwer degree to prove the existence of solutions to the mean field equation (1). Firstly, we prove the compactness result and conclude that every solution to the equation (1) is uniformly bounded. Then the Brouwer degree can be well defined. Secondly, we calculate the Brouwer degree for the equation (1), say $$d_{{\rho},h}=\{{-1,\;{\rho}>0, \atop 1,\;{\rho}<0.}$$ Consequently, the equation (1) has at least one solution due to the Brouwer degree d𝜌,h ≠ 0.

TOUCHE ROUCHE

  • Harte, Robin;Keogh, Gary
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • There seems to be a love-hate relationship between Brouwer's fixed point theorem and the fundamental theorem of algebra; in this note we offer one more tweak at it, and give a version of Rouches theorem.

A Comparing Study of Two Constructivisms on L.E.M. (배중률을 둘러싼 구성주의의 두 입장 비교)

  • Oh, Chae-Hwan;Kang, Ok-Ki;Ree, Sang-Wook
    • Journal for History of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.45-59
    • /
    • 2011
  • Constructionists believe that mathematical knowledge is obtained by a series of purely mental constructions, with all mathematical objects existing only in the mind of the mathematician. But constructivism runs the risk of rejecting the classical laws of logic, especially the principle of bivalence and L. E. M.(Law of the Excluded Middle). This philosophy of mathematics also does not take into account the external world, and when it is taken to extremes it can mean that there is no possibility of communication from one mind to another. Two constructionists, Brouwer and Dummett, are common in rejecting the L. E. M. as a basic law of logic. As indicated by Dummett, those who first realized that rejecting realism entailed rejecting classical logic were the intuitionists of the school of Brouwer. However for Dummett, the debate between realists and antirealists is in fact a debate about semantics - about how language gets its meaning. This difference of initial viewpoints between the two constructionists makes Brouwer the intuitionist and Dummettthe the semantic anti-realist. This paper is confined to show that Dummett's proposal in favor of intuitionism differs from that of Brouwer. Brouwer's intuitionism maintained that the meaning of a mathematical sentence is essentially private and incommunicable. In contrast, Dummett's semantic anti-realism argument stresses the public and communicable character of the meaning of mathematical sentences.

FIXED POINT THEOREMS ON GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.491-502
    • /
    • 1998
  • We obtain new fixed point theorems on maps defined on "locally G-convex" subsets of a generalized convex spaces. Our first theorem is a Schauder-Tychonoff type generalization of the Brouwer fixed point theorem for a G-convex space, and the second main result is a fixed point theorem for the Kakutani maps. Our results extend many known generalizations of the Brouwer theorem, and are based on the Knaster-Kuratowski-Mazurkiewicz theorem. From these results, we deduce new results on collectively fixed points, intersection theorems for sets with convex sections and quasi-equilibrium theorems.

  • PDF

직관주의 논리

  • 이승온;김혁수;박진원;이병식
    • Journal for History of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.32-44
    • /
    • 1999
  • This paper is a sequel to [8]. Development of modern logic was initiated by Boole and Morgan. Boolean logic is one of their completed works. Cantor created the set theory along with cardinal and ordinal numbers. His theory on infinite sets brought about a remarkable development on modern mathematical theory, but generated many paradoxes (e.g. Russell Paradox) that in turn motivated mathematicians to solve them. Further, mathematicians attempted to construct sound foundations for Mathematics. As a result three important schools of thought were formed in relation to fundamentals of mathematics for the resolution of paradoxes of set theory, namely logicism developed by Russell and Whitehead, intuitionism lead by Brouwer and formalism contended by Hilbert and Bernays. In this paper, we examine the logic for intuitionism which is originated by Brouwer in 1908 and study Heyting algebra.

  • PDF

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

THE BROUWER AND SCHAUDER FIXED POINT THEOREMS FOR SPACES HAVING CERTAIN CONTRACTIBLE SUBSETS

  • Park, Sehie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.83-89
    • /
    • 1993
  • Applications of the classical Knaster-Kuratowski-Mazurkiewicz theorem [KKM] and the fixed point theory of multifunctions defined on convex subsets of topological vector spaces have been greatly improved by adopting the concept of convex spaces due to Lassonde[L]. Recently, this concept has been extended to pseudo-convex spaces, contractible spaces, or spaces having certain families of contractible subsets by Horvath[H1-4]. In the present paper we give a far-reaching generalization of the best approximation theorem of Ky Fan[F1, 2] to pseudo-metric spaces and improved versions of the well-known fixed point theorems due to Brouwer [B] and Schauder [S] for spaces having certain families of contractible subsets. Our basic tool is a generalized Fan-Browder type fixed point theorem in our previous works [P3, 4].

  • PDF

직관주의

  • 박창균
    • Journal for History of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.82-88
    • /
    • 1997
  • 수학 기초의 위기에 대한 직관주의적 대안은 파격적인 것이었다. 수학을 지나치게 축소시켰다고 비난을 받기도 하지만 역리의 제거라는 측면만 본다면 직관주의는 성공적이라고 할 수 있었다. 본고는 직관주의를 개관하고 직관주의가 가지는 보다 철학적이고 본질적인 측면을 직관주의의 창시자인 Brouwer의 수학관과 세계관에서 찾는다.

  • PDF