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FIXED POINT THEOREMS ON
GENERALIZED CONVEX SPACES

Hoonioo Kim

ABSTRACT. We obtain new fixed point theorems on maps defined
on “locally G-convex” subsets of a generalized convex spaces. Our
first theorem is a Schauder-Tychonoff type generalization of the
Brouwer fixed point theorem for a G-convex space, and the second
main result is a fixed point theorem for the Kakutani maps. Our
results extend many known generalizations of the Brouwer theo-
rem, and are based on the Knaster-Kuratowski-Mazurkiewicz the-
orem. From these results, we deduce new results on collectively
fixed points, intersection theorems for sets with convex sections and
quasi-equilibrium theorems.

0. Introduction

There have appeared many generalizations of the concept of convex
subsets of a topological vector space (t.v.s.). Especially, the convex
spaces due to Lassonde [18] and the H-spaces [1-3] due to Horvath [11-
13] were shown to be very useful in many fields in mathematics such
as the KKM theory, fixed point and coincidence theory, variational
inequalities, best approximations, and minimax theory.

Motivated by recent works of Park [20-23] on convex spaces and H-
spaces, Park and the author [25] introduced the notion of generalized
convex spaces or G-convex spaces which extend many of topological
spaces having generalized convexity structures. In the present paper,
we obtain fixed point theorems for “locally G-convex” subsets of G-
convex spaces.
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Our first main result, Theorem 1, is a Schauder-Tychonoff type gen-
eralization of the Brouwer fixed point theorem for a G-convex space
with certain “local convexity.” Our second main result, Theorem 2, is
a fixed point theorem for Kakutani maps. From Theorem 2, we deduce
new results on collectively fixed points, intersection theorems for sets
with convex sections and quasi-equilibrium theorems.

1. Preliminaries

Throughout this paper, we assume that any topological space is
Hausdorff.

A multifunction (or map) F : X — Y is a function from a set X
into the power set 2¥ of Y; that is, a function with the values Fx CY
for z € X and the fibers F-y={z € X : y € Fz} fory € Y. For
topological spaces X and Y, amap T : X — Y is said to be closed if
its graph Gr(T) = {(z,y) 1z € X,y € Tz} isclosed in X x Y.

For A C X, let F(A) = |J{Fz : 2 € A}. For any B C Y, the lower
inverse of B under F is defined by F~(B) = {z € X : Fz N B # 0}.
The (lower) inverse of F : X — Y is the multifunction F~ : Y — X
defined by z € F~y if and only if y € Fz.

For topological spaces X and Y, amap F : X — Y is upper semi-
continuous (u.s.c.) if, for each closed set B C Y, F~(B) is closed in
X; lower semicontinuous (l.s.c.) if, for each open set B C Y, F~(B)
is open in X; and compact provided F(X) is contained in a compact
subset of Y. :

If Y is a compact topological space and F' : X — Y a closed multi-
function with nonempty values, then F' is u.s.c.

Let  denote the closure.

Let X be a topological space, R a cover of X, and St(B,R) =
WH{V e R: BNV # 0} for each BC X. A cover R of X is called a
star refinement [barycentric refinement, resp.] of a cover U whenever
the cover {St(V,R): V € R} [{St(z,R) : ¢ € X}, resp.] refines Y. For
any A C X or A € X, let V4(X) be the set of all open neighborhoods
of A.

A topological space X is said to be contractible if the identity func-
tion 1x of X is homotopic to a constant function.

Let X be a topological space and (X) the set of all nonempty finite
subsets of X. A pair (X, F) is called an H-space [1] or a c-space [13]
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if F = {F(A)} is a family of contractible subsets of X indexed by
A € (X)) such that F(A) C F(B) whenever A C B € (X).

For an H-space (X, F), a subset C of X is said to be H-convez
(or F-set) if for each A € (X), A C C implies F(A) C C. Given
a nonempty subset A of an H-space (X, F'), the H-convex hull of A,
denoted by H-co A, is defined by Tarafdar [33] as follows:

H-coA= ﬂ{Y tACY C X and Y is H-convex}.

For a set A, let |A| denote the cardinality of A. Let A,, denote the
standard n-simplex; that is,

n+1 n+1
Ap={ueR"™ :u=>" Mwe, X 20, Y \(u) =1},
i=1 i=1

where e; is the i-th unit vector in R?*1,
A generalized convex space or a G-convez space (X;I') consists of a
topological space X and a function I' : (X) — X such that
(1) for each A,B € (X), A C B impliesI'y =T'(A) C 'p; and
(2) for each A € (X) with |A| = n + 1, there exists a continuous
function ¢4 : A,, — I'4 such that J € (A4) implies ¢p4(A,) C
L.
Here A; denotes the face of A,, corresponding to J € (A).
Note that I" 4 does not need to contain A for A € (X). For details,
see [25].
For an (X;TI), a subset C of X is said to be G-convez if A € (C)

implies I'y C C. For a nonempty subset S of X, the G-convez hull of
S, G-co S, is defined by

G-coS = ﬂ{Y :SCY Cc X andY is G-convex}.

A subset C of X is said to be of type Iif for any x € C and V €
Vz(X), there exists a U € V,(X) such that G-co(UNC) C V. And a
subset C of X is said to be of type ITif {z} is G-convex for z € C and
for any compact G-convex subset A of C and V € V4(X), there exists
a U € Va(X) such that G-co(UNC) C V.
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A convex subset X in a t.v.s. is a G-convex space (X;I') by putting
I'y = co A, where co denotes the convex hull in the usual sense, and
every subset of a locally convex t.v.s. is type II. A subset C of a
t.v.s. E is said to be of Z-type if for every V € Vy(E) there exists a
U € Vo(F) such that co(UN{C —C)) C V [10]. Note that every subset
C of Z-type is of type II and any type II subset of X is of type I

Any convex space X becomes a G-convex space (X;I') by putting
I'a = coA. An H-space (X, F) is a G-convex space (X;I'). In fact, by
putting I'y = F(A) for each A € (X) with |A| = n + 1, there exists a
continuous map ¢4 : A, — X such that for all J C A, ¢p4(Ay) C F(J)
(13, Theorem 1).

The other major examples of G-convex spaces are metric spaces
with Michael’s convex structure [19], S-contractible spaces [26-28], Hor-
vath’s pseudo-convex spaces [11], Komiya’s convex spaces [17], Bielawski’.
simplicial convexities [4], and Jod’s pseudoconvex spaces [14].

From now on, we may write (X;I') for H-spaces instead of (X, F)
as in [1-3], where I'y = F(A) for each A € (X).

2. The Schauder-Tychonoff type fixed point theorems
The classical KKM theorem [16] can be stated as follows:

LEMMA. Let Ry, , R, be closed subsets of A,,. If for any {ig,- - -,
ix} C{i:i=0,---,n}, the face Ag of A, corresponding to {ig, - - ,%x},
is contained in | J{R; : j = 40, -+ ,ik}, then Y{R;:1=0,--- ,n} #0.

From Lemma we obtain the following Schauder-Tychonoff type [31,
34] fixed point theorem for G-convex spaces:

THEOREM 1. Let (X;T) be a regular G-convex space. Then any
compact continuous function g : X — X such that g(X) is of type I,
has a fixed point.

Proof. Let us assume that g has no fixed point. Then for each
z € X, there exists a Uy € V;(X) such that ¢ g~ (U,). Otherwise
g(z) € V for all V € V,(X), which means that z = g(z). Since X is
regular, there is a Vp € V;(X) such that

zeVoCcVyCU,.



Fixed point theorems on G-convex spaces 495

And thereexist V1 € V_ gry(X) and V2 €V, (X) such that V1NV, = 0.
Let Vz; :=VonVy. Then V; Ng= (V) CVang= (V) CVanVi =0.
Since g(X) is of type I compact subset of X, there exist a family of
open neighborhoods W = {W}, %y such that
(1.1) for every z € g(X), G-co(Wp N g(X))N g~ (W) =0

and an open star refinement Y of {W, N g(X) : W, € W}. Choose
a finite cover R = {U; € U};=0,1,... ,n Of 9(X), & € Ui, and W; :=
Wy, € W such that St(U;,R) ¢ W;Ng(X) for ¢ = 0,1,--- ,n. Let
A = {&,&1,--- &} and X; = X\g~(U;). Since U; = U; N g(X) for
some open subset U; of X and g~ (U;) = g‘(ﬁi), X; is closed in X.
By the definition of G-convex spaces, there exists a continuous function
b4 : Ap — X such that 4(Ay) C Tye;.jeuy foreach J € {0,1,--- ,n}.
IfN{U;:j€ J} #0 for some J C {0,1,--- ,n}, we have

¢a(Ay) CTg,jeqy C G-co (W, Ng(X))

for each jo € J, since {¢; : j € J} Cc U{U; : j € J} € W, N g(X).
And by (1.1), we have

G-co (Ws, N g(X)) < X\g™ (Wys) € X\g™ (W, n3(X)
c X\~ W) it =J X
jeJ

On the other hand, if ({U; : 5 € J} = 0 for some J C {0,1,---,n},
then (\{g7(U;) : j € J} = 0. Hence ¢pa(As) C X = {J;c; Xj; that is,

Ay coa (X)) cloa (Xy)
JjeJ jeJ

Note that ¢4~ (X;) is closed in A, for each j = 0,1,--- ,n. By Lemma,
Nizo®a™ (X;) # 0, and hence [y X; # 0. This implies

X# X\ X =g~ ) =X.

1=0 =0

This contradiction shows that g has a fixed point. 0
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PARTICULAR FORMS. A particular form of Theorem 1 for a para-
normed space (which is not locally convex) is due to Zima [35]. This is
extended by Rzepecki [29, Theorem 1] for a Hausdorff t.v.s. Note that
a Hausdorff t.v.s. is regular.

Since an H-space is a G-convex space, the following holds by The-
orem 1.

COROLLARY 1.1. Let (X;TI') be a regular H-space and g : X — X
be a compact continuous function such that

(1.2) for any z € g(X) and V € Vy(X), there exists a U € Vy(X)
such that H-co(UnNg(X)) c V.
Then g has a fixed point.

4

PARTICULAR FORMS. For a locally convex t.v.s., Theorem 1 and
Corollary 1.1 include earlier works of Brouwer [6], Schauder [30,31],
and Tychonoff [34]. They also contain Pasicki [26, Theorem 1] for
regular S-contractible spaces, Park [23, Theorem 3] and Horvath [13,
Theorem 4.4 and Corollary 4.4] for H-spaces since a uniform space is
regular.

COROLLARY 1.2. Let (X;I') be a complete metric H-space such
that any open ball of X is H-convex and for any € > 0, {z € X :
d(z,C) < €} is H-convex whenever C is H-convex. Then any compact
Ls.c. multifuction T : X —o X with nonempty closed H-convex values
has a fixed point.

Proof. By [13, Theorem 3.3], T has a continuous selection g : X —
X. By Corollary 1.1, g has a fixed point z = gz € T'z. |

PARTICULAR FORM. Horvath [13, Corollary 4.5].

3. Fixed points for Kakutani factorizable maps

We define the following map from a topological space X into a G-
convex space Y:

F € K(X,Y) < F is a Kakutani map; that is, F' is u.s.c. with
nonempty compact G-convex values.

From Theorem 1, we obtain the following result for Kakutani maps
on GG-convex spaces:
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THEOREM 2. Let (X;TI') be a compact G-convex space of type II.
Then any T € K(X, X) has a fixed point.

Proof. Suppose z ¢ Tz for z € X. Since X is regular, there are
U € V,(X) and V € Vr(X) such that UNV = §. For V, there
is a V§ € Vrz(X) such that G-coV3 C V by assumption. The upper
semicontinuity of 7' implies the existence of a P € V,(X) for which
T(P) c V1. Put Wy =UN P, then

(1) WonNG-coT(W,) cUNG-coV; cUNV =0.
For the cover W = {W; },ex of X, there exists an open star refinement
U subordinated to W. Choose a finite cover R = {U; € U}i=0,1,-,n
of X, z; € U; and a y; € T(U;) such that St(U;,R) C W, € W for
eachi=0,1,--- ,n. Let A= {yo,y1,"* ,Yn}. For a partition of unity
{pi:i=0,1,--- ,n} subordinated to R, define p: X — A,, by

p(z) = (po(x), p1(x)," - , Pn(x))
for each z € X. Since X is a G-convex space, there is a continuous
function ¢4 : A, — 'y C X such that ¢4(A;) CT'; for each J C A,

where A is the face of A,, corresponding to J.
Define h: X — X by

h(z) = (pap)z
for each z € X. Since X is of type II and h is continuous, h has a fixed
point zg = h(zg). And for some i € N, = {y; € A : pj(zo) # 0},

zo = h(zo) € pa(An,,) C T'n,, C G-coT(St(U;, R)) C G-coT(Wy,).

Since zg € U, it contradicts (1). This completes our proof. O

REMARK. By Theorem 2, for any simplex P, each finite composites
of maps in K(P, P) has a fixed point.

PARTICULAR FORMS. 1. For a locally convex t.v.s., Theorem 2
includes particular forms of Corollary 1.1.

2. If X is a compact convex subset of a locally convex t.v.s., Theorem
2 contains earlier works of Kakutani [15], Bohnenblust and Karlin [5],
Fan [7], and Glicksberg [8].

3. If X is of Z-type subset of a t.v.s., Theorem 2 includes Hadzié
[9].

4. If X is a compact S-contractible space and T' € K(X, X), Theo-
rem 2 includes Pasicki [28, Theorem 2. 13].
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4. Collectively fixed point theorem and its applications

Let I be a finite index set.
Let {X;}ic1 be a family of sets, and let i € I be fixed. Let

x=]I%; ad Xx‘= [] X,
jel jEIN{i}

If 2 € X* and j € I\{i}, let z denote the jth coordinate of z*. If
zt € X' and z; € X;, let (z%,z;) € X be defined as follows: its ith
coordinate is x; and, for j # 1, the jth coordinate is m; Therefore, any
z € X can be expressed as x = (z*,z;) for any i € I, where z* denotes
the projection of z in X°®.

For i € I, let (X;;T*%) be a G-convex space and X = [[,.; X;. Define
[':(X)— X by T4 = [[;c;T4,, where A; = m;(A) and m; : X — X;
is a projection. Then (X;I") becomes a G-convex space [32, Theorem
4.1].

Note that if (X;;T*) is a G-convex space of type II for each i € I,
then (X;T') be a G-convex space of type Il with the product topology.

From Theorem 2 we obtain the following collectively fixed point
theorem:

THEOREM 3. Let {(X;;I*)}icsr be a family of compact G-convex
spaces of type II, and T; € K(X, X;) for each i € I. Then there exists
an & € X such that &; € T;% for each i € I.

Proof. Define T : X — X by Tz = HieIT,-:c for each x € X. Then
T is us.c. by virtue of Ky Fan {7, Lemma 1] and T € K(X, X). By

Theorem 2, T has a fixed point £ € X; that is, £ € TZ and hence
Z; € Tyt foreach i € 1. O

The collectively fixed point theorem can be reformulated to gen-
eralization of von Neumann type intersection theorem for sets with
G-convex sections as follows:
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THEOREM 4. Let {(Xi;T%)}ier be a familly of compact G-convex
spaces of type II, and A; a closed subset of X such that A;(z*) is a
nonempty G-convex subset of X; for each z* € X* and i € I. Then

[ Ai #0.
iel
Proof. We use Theorem 3 with T;; : X —o X; defined by T;x = A;(z?)
for x € X. Then
XiXAi={(yi,:L‘)EX1;XXiXXi::I?EAi}

= {(y,-,a:i,x,-) eX;xX:xz; € Az(:l:z)}

= {(ys, 2%, 35) € Xi x X : z; € Ty(ys, )},
which implies that 7; is a closed map with nonempty G-convex values.
Since X; is compact, T; is u.s.c. Therefore, by Theorem 3, there exists

an £ € X such that 2; € T;& for all i € I. So we have & = (&, %;) € A;
for all 2 € I. This completes our proof. O

PARTICULAR FORM. Ky Fan [7, Theorem 2]: X; are convex subsets
of locally convex t.v.s. for all ¢ € I. This result was applied in [7] to
obtain a manimax theorem generalizing von Neumann’s and Ville’s.

Theorem 3 can be refomulated to the form of a quasi-equilibrium
theorem as follows:

THEOREM 5. Let {(X;;I")}ics be a family of compact G-convex
spaces of typeIl, S; : X —o X; aclosed map, and f;,¢; : X = X'xX; —
R u.s.c. functions for each i € I. Suppose that for each x € I,

(1) gi(z) < fi(x) for each z € X;
(2) the function M; defined on X by
Mi(z) = max gi(z",y)

is l.s.c.; and
(3) for each x € X, the set

{y € Siz : filz',y) > Mi(z)}
is G-convex.
Then there exists an & € X such that for each i € I,

&, € Sz and  fi(2', &) > Mi().
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Proof. For each i € I, define a map T; : X — X; by
Tix = {y € Siz: fi(z',y) > M;(z)}

for z € X. Note that each Tz is nonempty by (1) since S;z is compact
and g;(z*,-) is u.s.c. on S;z. We show that Gr(T;) is closed in X x X;.
In fact, let (z4,Ya) € Gr(T;) and (z4,Ya) — (z,y). Then

fi(z',y) > limsup fi(z}, yo) > limsup M;(za)
> liminf M;(z,) > M;(z)

and, since Gr(S;) is closed in X x X;, yo € S;z, implies y € S;z.
Hence (z,y) € Gr(T;). Since X; is compact, T; is u.s.c. Now we apply
Theorem 3. Then there exists an £ € X such that & € T;& for each
i € I; that is, &; € S;& and f;(2*,&) > M;(&). This completes our
proof. a

From Theorem 5, we have the following quasi-equilibrium theorem:

THEOREM 5'. Let (X;T') be a compact G-convex space of type II,
f,9: X xX — R us.c. functions, and S : X — X a closed map.
Suppose that

(1) g(z) < f(x) for each z € X;
(2) the function M defined on X by

M(z) = ggg}; g9{z,y) for z€ X

is L.s.c.; and
(3) for each x € X, the set

{y € Sz: f(z,y) > M(x)}

is G-convex.
Then there exists an & € X such that

e S and f(&,2)> M(3).
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