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Abstract. Let u be a function on a connected finite graph G = (V,E).
We consider the mean field equation

(1) −∆u = ρ

(
heu∫

V he
udµ

−
1

|V |

)
,

where ∆ is µ-Laplacian on the graph, ρ ∈ R\{0}, h : V → R+ is a

function satisfying minx∈V h(x) > 0. Following Sun and Wang [15], we
use the method of Brouwer degree to prove the existence of solutions to

the mean field equation (1). Firstly, we prove the compactness result and

conclude that every solution to the equation (1) is uniformly bounded.
Then the Brouwer degree can be well defined. Secondly, we calculate the

Brouwer degree for the equation (1), say

dρ,h =

{
−1, ρ > 0,

1, ρ < 0.

Consequently, the equation (1) has at least one solution due to the
Brouwer degree dρ,h 6= 0.

1. Introduction

In a series of works [7–9], Grigor’yan, Lin and Yang solved several discrete
differential equations on graphs, say the Yamabe equation, the Kazdan-Warner
equation and the Schrödinger equation, by finding critical points for various
functionals. Since then, by the variational method, Huang, Lin and Yau [10]
solved the mean field equations on graphs, and Zhu [16] solved the mean field
equations of the equilibrium turbulence on graphs. Recently, Lin and Yang [12]
studied a heat flow for the mean field equation on a finite graph. Their results
implied that the solution of heat flow converges to the solution of the mean
field equation. Earlier results of the mean field equations on a closed Riemann
surface are referred to [5, 6, 14].

In [11], Li defined the Leray-Schauder degree for the mean fields equation
on a closed Riemann surface. Chen and Lin [3] gave the specific formula of the
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Leray-Schauder degree. Recently, by the Brouwer degree, Sun and Wang [15]
extended the results of [3,11] to the Kazdan-Warner equations on a connected
finite graph. In this paper, we only care about the existence of solutions to
mean field equations on finite graphs by method of Brouwer degree [15]. To
state our results, we recall some definitions on graphs. Let G = (V,E) be a
graph, where V denotes the vertex set and E denotes the edge set. Throughout
this paper, we always assume that G satisfies the following conditions (a)-(d).

(a) (Finite) There exist only finite vertexs x ∈ V .
(b) (Connected) For any x, y ∈ V , there exist finite edges connecting x and

y.
(c) (Symmetric) Let w : V × V → R be a positive symmetric weight, i.e.,

wxy > 0 and wxy = wyx for any x, y ∈ V .
(d) (Positive finite measure) µ : V → R+ defines a positive finite measure

on graph G.

The space of real functions on V is denoted by V R, which is a finite dimensional
linear space due to finiteness of G. For any function u ∈ V R, the µ-Laplacian
of u at any vertex x is defined by

∆u(x) =
1

µ(x)

∑
y∼x

wxy(u(y)− u(x)),

where y ∼ x means xy ∈ E. For any function h ∈ V R, the integral of h on V
is denoted by ∫

V

hdµ =
∑
x∈V

µ(x)h(x),

and an integral average of h is denoted by

h̄ =
1

|V |

∫
V

hdµ =
1

|V |
∑
x∈V

µ(x)h(x),

where |V | =
∑
x∈V µ(x) stands for the volume of V .

According to Liu and Yang [13], Lp(V ) on graphs is defined by

Lp(V ) = {u ∈ V R : ‖u‖Lp(V ) < +∞}, 1 ≤ p ≤ ∞,

where the norm of u ∈ Lp(V ) is defined by

‖u‖Lp(V ) =

{
(
∫
V
|u|pdµ)

1
p , 1 ≤ p <∞,

maxx∈V |u(x)|, p =∞.

We consider the following mean field equation

(2) −∆u = ρ

(
heu∫

V
heudµ

− 1

|V |

)
,
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where ∆ is µ-Laplacian, ρ ∈ R\{0}, h ∈ V R+

and minx∈V h(x) > 0. In order
to solve the equation (2), let v = u− log

∫
V
heudµ. Then we can get

(3) −∆v = ρhev − ρ

|V |
.

To state the Brouwer degree related to (3), according to Sun and Wang [15],
we introduce a map Fρ,h ∈ C(V R, V R) denoted by

Fρ,h : V R → V R, v 7→ −∆v − ρhev +
ρ

|V |
.

Under the norm ‖ · ‖L∞(V ), the ball in V R with center at the origin and radius
R is denoted by BR. If v0 6∈ Fρ,h(∂BR) is a regular value, then the Brouwer
degree is defined by

deg(Fρ,h, BR, v0) =
∑

v∈BR,Fρ,h(v)=v0

sgn det(DFρ,h(v)).

According to Chang [2], the constraint that v0 is a regular value can be
relaxed to any value, so Fρ,h can define the Brouwer degree as long as it satisfies
v0 6∈ Fρ,h(∂BR). To calculate the Brouwer degree for the equation (3), by
Chang [2], we introduce two lemmas as follow.

Lemma 1.1 (Homotopic invariance [2]). If φ : B̄R× [0, 1]→ V R is continuous
and v0 6∈ φ(∂BR × [0, 1]), then

deg(φ(·, t), BR, v0) = constant.

Lemma 1.2 (Kronecker existence [2]). If v0 6∈ Fρ,h(∂BR) and deg(Fρ,h, BR, v0)

6= 0, then F−1
ρ,h(v0) 6= ∅

Let v0 = 0, according to Lemma 1.2, the equation (3) has at least one
solution in BR as long as 0 6∈ Fρ,h(∂BR) and deg(Fρ,h, BR, 0) 6= 0. In order to
0 6∈ Fρ,h(∂BR), i.e., the Brouwer degree is well defined, the compactness result
of the mean field equation (3) is needed.

Theorem 1.3. Let G = (V,E) be a graph satisfying conditions (a)-(d). If

ρ ∈ R\{0}, h ∈ V R+

and minx∈V h(x) > 0, then there exists a constant C only
depending on h, ρ and G such that every solution v to (3) satisfies

max
x∈V
|v(x)| ≤ C.

By Theorem 1.3 we conclude that there is no solution on the boundary ∂BR
for R large. Therefore, the Brouwer degree deg(Fρ,h, BR, 0) is well defined as
long as R is larger than C(ρ, h,G). Applying the homotopic invariance, we
have that deg(Fρ,h, BR, 0) is independent of R. Then the Brouwer degree for
the equation (3) is defined by

(4) dρ,h := lim
R→+∞

deg(Fρ,h, BR, 0).
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Since u and v have the same compactness result, we can prove the existence
of solutions to the equation (2) by calculating the Brouwer degree dρ,h for the
equation (3). As for the Brouwer degree dρ,h, we have following results.

Theorem 1.4. Let G = (V,E) be a graph satisfying conditions (a)-(d). If

ρ ∈ R\{0}, h ∈ V R+

and minx∈V h(x) > 0, then

dρ,h =

{
−1, ρ > 0,
1, ρ < 0.

Hence, Theorem 1.4 and the Kronecker existence show that the mean field
equation (2) has at least one solution if ρ ∈ R\{0} and minx∈V h(x) > 0.

Following the lines of [15], we prove Theorem 1.3 by blow-up analysis, which
is due to Brezis and Merle [1]. After establishing the compactness result of the
mean field equation, we calculate the Brouwer degree dρ,h for the mean field
equation (3). Compared with [15], where the Kazdan-Warner equation was
studied, our results are nontrivial extensions.

The remaining parts of this paper are organized as follow: In Section 2, we
give some basic inequalities on finite graphs. In Section 3, we prove that every
solution to equation (3) is uniformly bounded and Theorem 1.3 is proved.
Then the Brouwer degree dρ,h for the equation (3) can be well defined. In
Section 4, we calculate the Brouwer degree dρ,h for the equation (3) and prove
Theorem 1.4. Throughout this paper, we do not distinguish sequence and its
subsequence, we use C to denote absolute constants without distinguishing
them.

2. Preliminary analysis

Any two norms on V R are equivalent since G is a finite graph and V R is a
finite dimensional linear space. Denote

V R
0 =

{
u ∈ V R :

∫
V

udµ = 0

}
.

Then we can prove that maxV |∆u|, maxV u −minV u are norms of u on V R
0 .

Next, according to Sun and Wang [15], we will prove the following elliptic
estimate, which they did not give specific proof.

Lemma 2.1 (Elliptic estimate [15]). There exists a positive constant C such
that for all u ∈ V R

(5) max
V

u−min
V

u ≤ C max
V
|∆u|.

Proof. Firstly, we can prove the elliptic estimate is true for all u ∈ V R
0 . Suppose

not. Then for any k ∈ N, there exists uk ∈ V R
0 such that

max
V

uk −min
V

uk > kmax
V
|∆uk|,

∫
V

ukdµ = 0.
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Let ũk = uk/(maxV uk −minV uk). Then we have

max
V

ũk −min
V

ũk = 1, max
V
|∆ũk| <

1

k
,

∫
V

ũkdµ = 0.

Since

|ũk| = |ũk −
1

|V |

∫
V

ũkdµ| ≤ max
V

ũk −min
V

ũk = 1,

then ũk is bounded in V R
0 , and there is a subsequence of ũk and ũ0 ∈ V R

0 such
that ũk → ũ0 in V R

0 as k →∞. Thereby, taking k →∞, we have

max
V

ũ0 −min
V

ũ0 = 1, max
V
|∆ũ0| = 0,

∫
V

ũ0dµ = 0.

Then the second and the third equalities imply ũ0 ≡ 0, which contradicts the
first equality.

Secondly, if u ∈ V R we can let u′ = u − ū, then u′ ∈ V R
0 and repeat the

above process. This ends the proof of the lemma. �

Let u+ = max {u, 0} and u− = (−u)+. Sun and Wang [15] have proved
Kato’s inequality.

Lemma 2.2 (Kato’s inequality [15]).

(6) ∆u+ ≥ χ{u>0}∆u.

3. Blow-up analysis

We first consider the blow-up behavior of the mean field equation (3).

Lemma 3.1. Let G = (V,E) be a graph satisfying conditions (a)-(d). Let
vn ∈ V R be a sequence of solutions to

(7) −∆vn = ρnhne
vn − ρn

|V |
,

where hn ∈ V R and ρn ∈ R satisfy

lim
n→∞

hn = h, lim
n→∞

ρn = ρ.

Then after passing to a subsequence, only one of the following alternatives
holds.

(I) vn is bounded.
(II) vn uniformly diverges to −∞.

(III) There exists x0 such that vn(x0) diverges to +∞, furthermore, vn is
bounded from below in V and above in {x ∈ V : ρh(x) > 0}.

Proof. Firstly, assume vn is bounded from above. Then (7) implies that ∆vn is
bounded. According to Lemma 2.1 and using the elliptic estimate (5) we have

(8) max
V

vn −min
V

vn ≤ C max
V
|∆vn| ≤ C.

Next, we discuss the convergence behavior of minV vn in two cases. If minV vn
is bounded in below, we obtain the first alternative. If lim infn→∞minV vn =
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−∞, then (8) implies that up to a subsequence vn uniformly diverges to −∞,
so the second alternative holds.

Secondly, assume vn is not bounded from above, i.e., lim supn→∞ vn = +∞.
Since G is a finite graph, without loss of generality, we may assume that there
exists x0 and up to a subsequence of vn such that

vn(x0) = max
V

vn → +∞, n→∞.

Then applying Kato’s inequality (6) in Lemma 2.2, we have

−∆v−n = −∆(−vn)+

≤ −χ{−vn>0}∆(−vn)

= χ{vn<0}(
ρn
|V |
− ρnhnevn)

≤ ρ+
n

|V |
+ ρ+

nh
−
n + ρ−n h

+
n .

Hence,

‖∆v−n ‖L1(V ) =

∫
V

|∆v−n |dµ

=

∫
{∆v−n≥0}

∆v−n dµ−
∫
{∆v−n<0}

∆v−n dµ

= −2

∫
{∆v−n<0}

∆v−n dµ

≤ 2

∫
{∆v−n<0}

ρ+
n

|V |
+ ρ+

nh
−
n + ρ−n h

+
n dµ

≤ C,

which implies maxV |∆v−n | ≤ C. According to Lemma 2.1 there exists a subse-
quence such that

max
V

v−n = max
V

v−n −min
V

v−n ≤ C.

Therefore, vn is bounded from below in V . Then for any x1 ∈ V we have

ρnhn(x1)evn(x1) − ρn
|V |

= −∆vn(x1)

=
1

µ(x1)

∑
y∼x1

wx1y(vn(x1)− vn(y))

≤ Cvn(x1) + C,

which implies

ρnhn(x1) ≤ (Cvn(x1) + C +
ρn
|V |

)e−vn(x1).

Let n → ∞. Then ρh(x1) ≤ 0 if and only if lim supn→∞ vn(x1) = +∞, which
implies that vn is bounded in {x ∈ V : ρh(x) > 0}. �
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Next, we prove the compactness result of the mean field equation (3).

Lemma 3.2. Let G = (V,E) be a graph satisfying conditions (a)-(d). Suppose
that there exists a positive constant A depending only on h and ρ such that

(i) maxV (|h|+ |ρ|) ≤ A.
(ii) If ρh(x) > 0 for some x ∈ V , then ρh(x) ≥ A−1.
(iii) If ρ > 0, then ρ ≥ A−1.
(iv) If ρ < 0, then ρ ≤ −A−1 and minV h ≥ A−1.

Then there exists a positive constant C depending only on A and G such that
every solution to (3) satisfies

max
x∈V
|v(x)| ≤ C.

Proof. We give proof by contradiction. Let vn be a sequence of solution to the
equation (7). Suppose vn blows up as n converge to ∞ satisfying

lim
n→∞

‖vn‖L∞(V ) =∞.

Meanwhile, hn and ρn satisfy the conditions (i)-(iv) and

lim
n→∞

hn = h, lim
n→∞

ρn = ρ.

If vn uniformly diverges to −∞, then we consider

−∆(vn −min
V

vn) = ρnhne
vn − ρn

|V |
,

which yields that vn −minV vn is bounded according to Lemma 2.1. So vn −
minV vn diverges to a solution ϕ of the equation

−∆ϕ = − ρ

|V |
, min

V
ϕ = 0.

But this implies ρ = 0 and ϕ = 0. We may assume ρn = 0 by conditions (iii)
and (iv). Then in equation (7) we can obtain vn ≡ C, which contradicts that
vn diverges to −∞.

If maxV vn diverges to +∞, applying the conclusion (III) of Lemma 3.1, we
may assume vn is bounded from below in V and above in Ω = {x ∈ V : ρh(x) >
0}. When n is large enough, by condition (ii) we have

Ω ⊂ {x ∈ V : ρnhn(x) > 0}
⊂ {x ∈ V : ρnhn(x) ≥ A−1}
⊂ {x ∈ V : ρh(x) ≥ A−1}
⊂ Ω.

Then we have

ρn =

∫
V

ρn
|V |

dµ =

∫
V

ρnhne
vndµ

=

∫
Ω

ρnhne
vndµ+

∫
V \Ω

ρnhne
vndµ
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≤ C −
∫
V

(ρnhn)−evndµ,

which implies that
∫
V

(ρnhn)−evndµ ≤ C. Therefore,

‖∆vn‖L1(V ) =

∫
V

|∆vn|dµ

≤
∫
V

|ρnhn|evndµ+

∫
V

|ρn|
|V |

dµ

=

∫
Ω

(ρnhn)+evndµ+

∫
V

(ρnhn)−evndµ+ |ρn|

≤ C.

By Lemma 2.1, we have

max
V

vn ≤ min
V

vn + C,

which implies that minV vn diverges to +∞ and then vn must diverge to +∞.
Hence, Ω = ∅. So for any x ∈ V , we have ρh(x) ≤ 0.

We may assume ρnhn(x) ≤ 0 by condition (ii), otherwise, if ρnhn(x) > 0,
then we have ρnhn(x) ≥ A−1, which contradicts with ρh(x) ≤ 0 as n → ∞.
Thus, we have

ρn =

∫
V

ρnhne
vndµ ≤ 0.

According to the previous analysis, we obtain ρn < 0. Then by condition (iv),
we have minV hn ≥ A−1, thus

1 =

∫
V

hne
vndµ ≥ CA−1eminV vn .

Consequently, we have minV vn ≤ C, which contradicts that minV vn di-
verges to +∞. This ends the proof of Lemma 3.2. �

Remark 3.3. Actually, the conclusion (III) of Lemma 3.1 is reinforced when
minx∈V h(x) > 0. If ρ > 0, we can get vn is bounded in V . If ρ < 0, we can
only get vn is bounded from below in V . But this does not affect the proof of
Lemma 3.2 because ρ and h in Lemmas 3.1, 3.2 are more general.

Remark 3.4. The conditions (i)-(iv) are necessary in Lemma 3.2. For every

positive number ε, taking ρ = ±ε 1
2 , h = ε

1
2 in the equation (3), we have

−∆(− ln ε
1
2 |V |) = ±ε 1

2 (ε
1
2 e− ln ε

1
2 |V | − 1

|V |
).

When ρ = ε
1
2 , the condition (i) is necessary since limε→+∞− ln ε

1
2 |V | =

−∞, and the condition (ii) and (iii) are necessary since limε→0− ln ε
1
2 |V | =

+∞. When ρ = −ε 1
2 , the first part of condition (iv) is necessary since

limε→0− ln ε
1
2 |V | = +∞.
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If we let ρ = −1 and h = ε, then we have

−∆(− ln ε|V |) = −εe− ln ε|V | +
1

|V |
.

The second part of condition (iv) is necessary since limε→0− ln ε|V | = +∞.

Now we can give the proof of Theorem 1.3 by Lemma 3.2. In fact, it is easy
to prove that the conditions (i)-(iv) of Lemma 3.2 hold under the conditions

ρ ∈ R\{0}, h ∈ V R+

and minx∈V h(x) > 0, i.e., we can find a positive constant
A depending only on h and ρ such that

max
x∈V
|v(x)| ≤ C(A,G).

4. Brouwer degree

In this section, we will prove Theorem 1.4, precisely we will calculate the
Brouwer degree dρ,h, which is defined by (4). According to Sun and Wang
[15], the Brouwer degree dρ,h is well defined by the compactness result for the
equation (3).

Step 1. If ρ > 0, h ∈ V R+

and minx∈V h(x) > 0, we have dρ,h = −1.

Proof. Let vt satisfy

(9) −∆vt = [t+ (1− t)ρ][t+ (1− t)h]evt − tε+ (1− t)ρ
|V |

, t ∈ [0, 1],

where ε > 0 is sufficiently small. Applying Lemma 3.2, we have vt is uniformly
bounded with respect to t. Letting t = 0 in (9), we have

(10) −∆v0 = ρhev0 − ρ

|V |
.

Since v0 is uniformly bounded, the Brouwer degree dρ,h for the equation (10)
is well defined. Letting t = 1 in (9), we have

(11) −∆v1 = ev1 − ε

|V |
.

Similarly, the Brouwer degree for the equation (11) is well defined. According
to Lemma 1.1, the equation (10) and the equation (11) have the same Brouwer
degree. Thus, we can calculate the Brouwer degree of the equation (11). In
fact, the equation (11) only has a unique solution v1 = ln ε/|V | when ε is
sufficiently small. As for the specific proof, we refer readers to Sun and Wang
[15].

Now we rewrite the operator Fε,1 as follows:

Fε,1(v1) = −∆

 v1(x1)
...

v1(xn)

+
1

|V |

 ε
...
ε

−
 ev1(x1)

...
ev1(xn)

 ,



1314 Y. LIU

where xi ∈ V , i = 1, . . . , n. According to Chung [4], L := −∆ = (li,j)n×n is
a symmetric nonnegative matrix and 0 is the eigenvalue of L with multiplicity
one. Hence, for sufficiently small ε we have

det(DFε,1) = det(−∆− εE

|V |
) < 0.

By the homotopic invariance, we have

dρ,h = lim
ε→0

dε,1 = sgn det(DFε,1) = −1. �

Step 2. If ρ < 0, h ∈ V R+

and minx∈V h(x) > 0, we have dρ,h = 1.

Proof. Let vt satisfy

−∆vt = [(1− t)ρ− t][(1− t)h+ t]evt − (1− t)ρ− t
|V |

, t ∈ [0, 1].

As the same analysis as Step 1, we can calculate the Brouwer degree of

−∆v1 = −ev1 +
1

|V |
.

And we can claim that v1 = − ln |V | is the unique solution. In fact, v1 cannot
be anything but constant function. For otherwise, let v1(x0) = maxV v1 and
v1(x1) = minV v1. Then we have

−emaxV v1 +
1

|V |
= −∆v1(x0) =

1

µ(x0)

∑
y∼x0

wx0y(v1(x0)− v1(y)) > 0,

−eminV v1 +
1

|V |
= −∆v1(x1) =

1

µ(x1)

∑
y∼x1

wx1y(v1(x1)− v1(y)) < 0,

which is a contradiction. Hence, we have

dρ,h = d−1,1 = sgn det(DF−1,1) = sgn det(−∆ +
E

|V |
) = 1.

�

We finish the proof of Theorem 1.4. Finally, under the conditions ρ ∈
R\{0} and minx∈V h(x) > 0, the Kronecker existence shows that the mean
field equation (2) has at least one solution due to dρ,h 6= 0.
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