• 제목/요약/키워드: Brittle Damage

검색결과 204건 처리시간 0.024초

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.

대전지역 중생대 화강암 암반 내 취성파괴 예측연구 (Prediction of Brittle Failure within Mesozoic Granite of the Daejeon Region)

  • 장현식;최미미;배대석;김건영;장보안
    • 지질공학
    • /
    • 제25권3호
    • /
    • pp.357-368
    • /
    • 2015
  • 대전지역 중생대 화강암 암반을 대상으로 경험적 해석과 수치해석 모델링을 사용하여 심도에 따른 취성파괴 예측 연구를 수행하였다. 먼저 손상제어시험 등의 실내시험으로 경험적 해석과 수치해석 모델링에 필요한 입력 변수를 측정하였고, 측정결과를 바탕으로 연구지역의 암반을 경암에 속하는 그룹 A와 극경암에 속하는 그룹 B로 구분하여 각 그룹별 대표 물성치를 사용하였다. 취성파괴의 해석에는 해석구간의 심도와 측압계수(k)로 결정되는 원위치응력 값이 필요하나 연구지역의 원위치응력 값은 측정되지 않았다. 그러므로 다양한 원위치응력 상태를 고려하기 위하여 3가지의 측압계수 (k=1,2,3)를 분석에 적용하였다. 경험적 해석과 수치해석 모델링에서 측압계수가 1일 경우, 연구지역의 암반에서는 1000 m의 심도까지도 취성파괴가 발생할 가능성이 매우 낮은 것으로 분석되었다. 그러나 측압계수가 2일 경우에는 심도 800 m 구간에서부터, 측압계수가 3일 경우에는 심도 600 m 구간에서부터 취성파괴가 발생될 가능성이 높을 것으로 판단된다. 이 연구에서는 점착력약화-마찰각강화(CWFS) 모델과 Mohr-Coulomb 모델이 사용되었으며, CWFS 모델은 암반의 취성 파괴영역의 범위와 깊이를 잘 모사하였으나 모아-쿨롱 모델은 이러한 변화를 구현하지 못하였다.

압전소자를 이용한 무선 손상자현 스마트 콘크리트의 개발 (Development of the Wireless-Diagnosis Smart Concrete using PZT for Damage)

  • 김이성;이수곤;김화중
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.416-421
    • /
    • 2005
  • Concrete are brittle materials and they are which come to brittle fracture rapidly by progress of cracks. Therefore, what the time for repairing the damage portion is understands importantly by such cracks. When they happened the glass pipe similar to concrete was used. Such a glass pipe can insert repair material in an inside, or can use it by switch. They are interested in the crack monitoring of structure using FM radio sensor and PZT sensor. In this study, the monitoring to a crack was studied using FM radio sensor and PZT sensor. Therefore, the purpose of this study is the fundamental research which detects damages of main members using the compound sensor which consisted of the radio sensors of resistance, PZT, and FM system.

  • PDF

매크로 탄성 계수에 미치는 마이크로 크랙의 영향 평가 (An Evaluation of the Effect of Micro-cracks on Macro Elastic Moduli)

  • 강성수;김홍건
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.97-103
    • /
    • 2006
  • A meso-scale analysis method using the natural element method, which is a kind of meshless method, is proposed for the analysis of material damage of brittle microcracking solids such as ceramic materials, concrete and rocks. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The macro elastic moduli of anisotropic as well as isotropic solids containing a number of randomly distributed microcracks are calculated in order to demonstrate the validity of the proposed method.

마이크로 크랙을 포함한 재료의 매크로 탄성 정수에 관한 자연요소해석 (Natural Element Analysis on Macro Elastic Moduli for Materials with Micro-cracks)

  • 강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.716-723
    • /
    • 2006
  • A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the micorcracks. The macro elastic moduli of isotropic solids containing a number of randomly distributed microcracks are calculated considering the effect of microcrack closure to demonstrate the validity of the proposed method.

취성재료의 손상후 잔류강도 평가 (Evaluation of Residual Strength in Damaged Brittle Materials)

  • 신형섭;오상엽;서창민
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구 (A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film)

  • 윤경구;장원석;이성국;김재구;나석주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF

압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (II) -수명향상을 위한 국산과 외산소재의 물성과 파괴특성비교- (Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (II) -Comparison of properties between domestic and French-made products-)

  • 서창민;서민수;오상엽
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.40-46
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditions ($570^{\circ}C$) to analyze the cause and prevent the roll shell steel's brittle fracture and its damage.

국부 취화부와 용접 잔류응력 효과를 고려한 원자로 출구노즐 용접부의 피로강도 평가 (Fatigue Assessment of Reactor Vessel Outlet Nozzle Weld Considering the LBZ and Welding Residual Stress Effect)

  • 이세환
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.48-56
    • /
    • 2006
  • The fatigue strength of the welds is affected by such factors as the weld geometry, microstructures, tensile properties and residual stresses caused by fabrication. It is very important to evaluate the structural integrity of the welds in nuclear power plant because the weldment undergoes the most of damage and failure mechanisms. In this study, the fatigue assessments for a reactor vessel outlet nozzle with the weldment to the piping system are performed considering the welding residual stresses as well as the effect of local brittle zone in the vicinity of the weld fusion line. The analytical approaches employed are the microstructure and mechanical properties prediction by semi-analytical method, the thermal and stress analysis including the welding residual stress analysis by finite element method, the fatigue life assessment by following the ASME Code rules. The calculated results of cumulative usage factors(CUF) are compared for cases of the elastic and elasto-plastic analysis, and with or without residual stress and local brittle zone effects, respectively. Finally, the fatigue life of reactor vessel outlet nozzle weld is slightly affected by the local brittle zone and welding residual stresses.

취성파괴에 관한 고찰 (Study of Brittle Failure)

  • 천대성;신중호;전석원;박찬
    • 터널과지하공간
    • /
    • 제16권6호
    • /
    • pp.437-450
    • /
    • 2006
  • 암반구조물의 파괴는 초기응력의 크기, 무결암의 강도 그리고 단층이나 절리와 같이 암반 내에 존재하는 불연속면의 상태에 의해 좌우된다. 일반적으로 고심도에 건설되는 암반구조물의 경우 높은 현지응력과 공동굴착에 따른 유도응력으로 인해 공동 경계면에서 스폴링이나 슬래빙과 같은 취성파괴가 발생할 수 있다. 최근 고심도에 건설되는 암반구조물이 증가함에 따라 취성파괴의 발생사례가 증가하고 있으며, 더욱이 국내의 저심도 구간에서도 스폴링 현상이 보고되어 취성파괴에 대한 연구의 필요성이 요구된다. 그러나 아직까지 취성파괴에 대해 명확하게 규명되지 않아 본 보고에서 취성파괴 현상을 규명하기 위해 수행되었던 기존 연구결과를 중심으로 취성파괴와 그 특징에 대하여 요약 정리하였다.