• Title/Summary/Keyword: Bridge Diode

Search Result 207, Processing Time 0.021 seconds

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Single-phase SRM Drive with Torque Ripple Reduction and Power Factor Improvement

  • Lee, D.H.;Ahn, J.W.;Lee, Z.G.
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.57-61
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier and large filter capacitor connected with DC line terminal. Due to the large capacity of the capacitor, the charged time of capacitor is very short from the AC source. Lead to the bridge rectifiers draws pulsating current from the AC source side, which results in reduction of power factor and low system efficiency. Therefore a novel single-phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor with a novel switching topology. The proposed drive circuit consists of one switching part and diode, which can separate the output of AC/DC rectifier from the large capacitor and supply power to SRM alternately, in order to realize the torque ripple reduction and power factor improvement through the switching scheme. In addition, the validity of the proposed method is tested by some simulations and experiments.

  • PDF

PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구 (A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel)

  • 이재삼;손호인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권6호
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

입력역률 제어형 인버터 용접기 특성해석에 관한 연구 (A Study on Characteristics of input current controlled inverter arc welder)

  • 송성학;채영민;우동학;최규하;장도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.324-327
    • /
    • 1996
  • This paper presents the adoption of PWM converter to enhance input power factor in inverter arc welder. By using PWM converter in inverter arc welder, the disadvantages of bridge diode converter such as low input power factor is improved, new NCT(Noise Cut Transformer) is designed to reduce noise which has harmful effect in switching component, half bridge PWM inverter is adopted to reduce cost in inverter arc welder.

  • PDF

새로운 소프트 스위칭 FB DC-DC 컨버터 (Novel soft switching FB DC-DC converter)

  • 김은수;최해영;조기연;계문호;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.251-255
    • /
    • 1997
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with energy recovery snubber (ERS) attached at the secondary side of transformer. The energy recovery snubber (ERS) adopted in this study is consisted of three fast recovery diode(Ds1, DS2, Ds3), two resonant capacitor (Cs1, Cs2)

  • PDF

하이브리드 제어기법을 이용한 Asymmetrical 하프 브리지 컨버터의 다이오드 스트레스 저감기법 (Diode Stresses Reduction Of Asymmetrical Half-Bridge Converter Using Hybrid Control Scheme)

  • 조창규;이동윤;김경환;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.221-223
    • /
    • 2003
  • This paper presents a new hybrid control method of asymmetrical/symmetrical half-bridge converter (AHBC/SHBC) with low voltage stress of the diodes. The proposed new control scheme is executed by using feedback of the input voltage and then can decide operation of the converter is divided into two ranges, which are asymmetrical control and symmetrical control, So the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, and low conduction loss according to the low voltage drop. The proposed control scheme is verified by simulated results.

  • PDF

태양전지 실리콘 결정 성장용 120kW 3kA PWM 컨버터 시스템 개발 (Development of PWM Converter System for Solar Cell Silicon Ingot Glowing 120kW 3kA)

  • 김민회;박영식
    • 전기학회논문지P
    • /
    • 제63권3호
    • /
    • pp.125-130
    • /
    • 2014
  • This paper is research result for a development of solar cell silicon ingot glowing(SCSIG) PWM converter system for 120[kW] 3[kA]. The system include 3-phase AC-DC rectifier diode converter of input voltage AC 460[V] and 60[Hz], DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 50[V] and large current 3,000[A], carbon resistor load 0.2 [$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 15KHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SCSIG system.

FB DC-DC Converter의 도전손실 저감과 무손실 스너버 회로에 관한 연구 (A Study on Reducing Conduction Losses and Lossless Snubber Circuit of Full-Bridge DC-DC Converter)

  • 라병훈;이현우;권순걸;김준홍;서기영;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2665-2667
    • /
    • 1999
  • This Paper proposes a new toplogy snubber circuit of Full-Bridge DC-DC Converter for reducing conduction losses and snubber circuit heating loss. Using Partial Resonent Soft Switching Method and Clamping, studying on a new snubber circuit for reducing losses that a snubber circuit heating loss in the secondly diode rectification side, a switching losses in the primary side of IGBT inverter and conduction losses in the high frequency insulation transformer. In this paper, we present FB DC-DC converter included a new lossless snubber circuit, and then be analyzed and simulated.

  • PDF

DC링크 스위치를 갖는 새로운 H-브릿지 멀티레벨 인버터 (Novel H-bridge Multi-level Inverter with DC-link Switches)

  • 박민영;김흥근;전태원;노의철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.372-373
    • /
    • 2010
  • 본 논문에서는 멀티레벨 인버터의 토폴로지로서 H-bridge 토폴로지를 기본으로 하여 2개의 전력용 스위치와 2개의 diode를 DC링크에 연결한 변형된 구조를 제안한다. 제안된 방식은 계통 연계형 단상 멀티레벨 인버터로서 기존의 단상 인버터에 비하여 출력 전압 파형이 정현파에 가깝고, 고압 대용량 시스템용 멀티레벨 인버터로의 확장도 용이할 뿐만 아니라 cascade연결을 통하여 간단히 전압레벨을 확장 할 수 있다는 장점을 가진다. 제안된 토폴로지의 타당성은 시뮬레이션과 실험을 통하여 검증하였다.

  • PDF

Single-Stage High-Power-Factor Electronic Ballast with a Symmetrical Class-DE Resonant Rectifier

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.429-438
    • /
    • 2012
  • This paper presents the use of a novel, single-stage high-power-factor electronic ballast with a symmetrical class-DE low-$d{\upsilon}$/$dt$ resonant rectifier as a power-factor corrector for fluorescent lamps. The power-factor correction is achieved by using a bridge rectifier to utilize the function of a symmetrical class-DE resonant rectifier. By employing this topology, the peak and ripple values of the input current are reduced, allowing for a reduced filter inductor volume of the EMI filter. Since the conduction angle of the bridge rectifier diode current was increased, a low-line current harmonic and a power factor near unity can be obtained. A prototype ballast, operating at an 84-kHz fixed frequency and a 220-$V_{rms}$, 50-Hz line input voltage, was utilized to drive a T8-36W fluorescent lamp. Experimental results are presented which verify the theoretical analysis.