• Title/Summary/Keyword: Breast dose

Search Result 536, Processing Time 0.028 seconds

Anti-migration and anti-invasion effects of LY-290181 on breast cancer cell lines through the inhibition of Twist1

  • Jiyoung Park;Sewoong Lee;Haelim Yoon;Eunjeong Kang;Sayeon Cho
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.410-415
    • /
    • 2023
  • Breast cancer has become the most common cancer among women worldwide. Among breast cancers, metastatic breast cancer is associated with the highest mortality rate. Twist1, one of the epithelial-mesenchymal transition-regulating transcription factors, is known to promote the intravasation of breast cancer cells into metastatic sites. Therefore, targeting Twist1 to develop anti-cancer drugs might be a valuable strategy. In this study, LY-290181 dose-dependently inhibited migration, invasion, and multicellular tumor spheroid invasion in breast cancer cell lines. These anti-cancer effects of LY-290181 were mediated through the down-regulation of Twist1 protein levels. LY-290181 inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Therefore, our findings suggest that LY-290181 may serve as a basis for future research and development of an anti-cancer agent targeting metastatic cancers.

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

Comparison of Conventional and Hypofractionated Radiotherapy in Breast Cancer Patients in Terms of 5-Year Survival, Locoregional Recurrence, Late Skin Complications and Cosmetic Results

  • Hashemi, Farnaz Amouzegar;Barzegartahamtan, Mohammadreza;Mohammadpour, Reza Ali;Sebzari, Ahmadreza;Kalaghchi, Bita;Haddad, Peiman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4819-4823
    • /
    • 2016
  • Bckground: Adjuvant radiation therapy is commonly administered following breast-conserving surgery for breast cancer patients. Hypofractionated radiotherapy can significantly reduce the waiting time for radiotherapy, working load on machines, patient visits to radiotherapy departments and medical costs. Material/Methods: Fifty-two patients with operable breast cancer (pT1-3pN0M0) who underwent breast conservation surgery in Tehran Cancer Institute during January 2011 to January 2012, were randomly assigned to undergo radiotherapy in two arms (hypofractionated radiotherapy arm with 30 patients, dose 42.5 Gy in 16 fractions; and conventional radiotherapy arm with 22 patients, dose 50 Gy in 25 fractions). W compared these two groups in terms of overall survival, locoregional control, late skin complications and cosmetic results. Results: At a median follow-up of 52.4 months (range: 0-64 months), the follow-up rate was 82.6%. Overall, after 60 months, there was no detectable significant differences between groups regarding cosmetic results (p = 0.857), locoregional control or survival. Conclusions: The results confirm that hypofractionated radiotherapy with a subsequent boost is as effective as conventional radiotherapy, is well-tolerated and can be used as an alternative treatment method following breast conservation surgery.

Inhibitory Effect of D-pinitol on Both Growth and Recurrence of Breast Tumor from MDA-MB-231 Cancer Cells (D-Pinitol의 유방암 증식 및 재발 억제 효능)

  • Kim, Yoon-Seob;Park, Ji-Sung;Kim, Minji;Hwang, Bang Yeon;Lee, Chong-Kil;Song, Sukgil
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • D-Pinitol, an anti-diabetic substance, is a naturally occurring compound found in legumes. In this study, we investigated the inhibitory effect of D-pinitol on growth and recurrence of breast cancer. When D-pinitol was treated on MDA-MB-231 or MCF-7 breast cancer cells, it was observed that the viability of the two cancer cell lines was reduced in MTT assay. In order to examine the effect on the growth of breast tumor, mouse xenograft assay was carried out. On day 0, nine millions cells of MDA-MB-231 were injected subcutaneously into nude mouse and D-pinitol was administered orally at the dose of 500 mg/kg or 1000 mg/kg body weight for consecutive 45 days. Tumor size was reduced in dose-dependent manner upto 95.4% in 1000 mpk-treated group, compared with the non-treated control group. When D-pinitol was co-administrated with $4{\mu}g$ of doxorubicin, recurrence of breast tumor was delayed by two weeks, compared with the mouse group of doxorubicin monotherapy. Consistent with this data, it was observed that the population of cancer stem cells (CSCs), responsible for recurrence of cancer, within tumor mass was significantly reduced. Taken together, D-pinitol inhibits the growth of breast cancer and relapse of the tumor by suppressing the proliferation of CSCs.

Assessment of Temporary Radioactivation for Tissue Expanders in Breast Radiation Therapy: Preliminary Study

  • Hwajung Lee;Do Hoon Oh;Lee Yoo;Minsoo Chun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.100-106
    • /
    • 2023
  • Background: As breast tissue expanders consist of metallic materials in the needle guard and ferromagnetic injection port, irradiation can produce radioactivation. Materials and Methods: A CPX4 (Mentor Worldwide LLD) breast tissue expander was exposed using the Versa HD (Elekta) linear accelerator. Two photon energies of 6 and 10 MV-flattening filter free (FFF) beams with 5,000 monitor units (MU) were irradiated to identify the types of radiation. Furthermore, 300 MU with 10 MV-FFF beam was exposed to the CPX4 breast tissue expander by varying the machine dose rates (MDRs) 600, 1,200, and 2,200 MU/min. To assess the instantaneous dose rates (IDRs) solely from the CPX4, a tissue expander was placed outside the treatment room after beam irradiation, and a portable radioisotope identification device was used to identify the types of radiation and measure IDR. Results and Discussion: After 5,000 MU delivery to the CPX4 breast tissue expander, the energy spectrum whose peak energy of 511 keV was found with 10 MV-FFF, while there was no resultant one with 6 MV-FFF. The time of each measurement was 1 minute, and the mean IDRs from the 10 MV-FFF were 0.407, 0.231, and 0.180 μSv/hr for the three successive measurements. Following 10 MV-FFF beam irradiation with 300 MU indicated around the background level from the first measurement regardless of MDRs. Conclusion: As each institute room entry time protocol varies according to the working hours and occupational doses, we suggest an addition of 1 minute from the institutes' own room entry time protocol in patients with CPX4 tissue expander and the case of radiotherapy vaults equipped with a maximum energy of 10 MV photon beams.

Measurement of Breast Skin Dose According to Shield Thickness During Whole Spine Scanography Using Digital Radiography System (Digital Radiography 시스템을 사용하여 전 척추검사 시 차폐체 두께에 따른 유방피부선량 측정)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • Whole Spine Scanography (WSS) using the Digital Radiography (DR) system is an examination that requires whole body X-ray exposure, which involves more exposure to radiation for patients than other general radiographies. This can affect the occurrence of breast cancer. This research measured radiation dose when breasts were shield and not shield using the Auto Exposure Control (AEC) mode. The radiation dose without a shield was 1.540 mGy, and that using a collimator was measured 0.506 mGy. Moreover, 0.733 mGy was measured when 1 shield (0.3 mm) was used, and $0.523{\mu}Gy$ when 5 of them (1.5 mm) were used. The results showed that the radiation dose with 5 shields and the radiation dose with a collimator were similar. Moreover, 0.233 mGy was measured when 8 shields (2.4 mm) were used. The standard deviation were 0.081 when using collimator and 0.014 when 5 shields were used. Also, when 8 shields were used, it was found to be 0.002. Most patients who go under a scoliosis test are children or young people who are highly sensitive to radiation. In the research results, the case where the organs sensitive to radiation, women's breasts, were shielded showed more distinct differences compared to without shields. It is considered that using shields can provide more constant shield than using a collimator and lower the risk of breast cancer caused by exposure to radiation.

A Change in an Absorbed Dose of the Heart in General and Respiratory Control Radiation Treatment Plans (일반 및 호흡조절 방사선치료계획에서 심장의 흡수선량 변화)

  • Yang, Eun-Ju;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2018
  • In radiation treatment, it is unavoidable to block the influence of scattered ray on a skin and prevent internal normal organs from being exposed to radiation. It is fair to say that radiation therapy aims to reduce an absorbed dose of normal tissues. In particular, in radiation therapy of left-sided breast cancer, the internal neighboring organs are normal breast tissues, the heart, and the lung. The side effects on the heart include cardioplegy and myocardial infarction. This study tried to observe changes in the volume and dose of the heart in general radiation therapy plan and respiratory control based radiation therapy plan for patients with left-sided breast cancer, and to find the heart's volume and dose generated by respiration. According to the 4D computer tomography (CT), a volume of the heart had $12.8{\pm}8.7cc$ on average, and its dose had $17.3{\pm}12.1cGy$ on average. The differences in the volume and dose may cause side effects in radiation treatment. Therefore, it is necessary to apply respiratory control technique to establish the radiation treatment plan based on an accurate position of the heart.