• 제목/요약/키워드: Breast cancer stem cells

검색결과 44건 처리시간 0.022초

Functionalizing Liposomes with Dual Aptamers for Targeting of Breast Cancer Cells and Cancer Stem Cells

  • Park, Hee-Bin;You, Ji-Eun;Kim, Pyung-Hwan;Kim, Keun-Sik
    • 대한의생명과학회지
    • /
    • 제27권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Cancer stem cells, which are known to drive tumor formation and maintenance, are a major obstacle in the effective treatment of various types of cancer. Trans-membrane glycoprotein mucin 1 antigen and cell surface glycogen CD44 antigen are well-known surface markers of breast cancer cells and breast cancer stem cells, respectively. To effectively treat cancer cells and cancer stem cells, we developed a new drug-encapsulating liposome conjugated with dual-DNA aptamers specific to the surface markers of breast cancer cells and their cancer stem cells. These two aptamer (Apt)-targeted liposomes, which were prepared to encapsulate doxorubicin (Dox), were named "Dual-Apt-Dox". Dual-Apt-Dox is significantly more cytotoxic to both cancer stem cells and cancer cells compared to liposomes lacking the aptamers. Furthermore, we demonstrated the inhibitory efficacy of Dual-Apt-Dox against the experimental lung metastasis of breast cancer stem cells and cancer cells in athymic nude mice. We also showed the potent antitumor effects of dual-aptamer-conjugated liposome systems by targeting cancer cells as well as cancer stem cells. Thus, our data indicate that dual-aptamer-conjugated liposome systems can prove to be effective drug delivery vehicles for breast cancer therapy.

유방암 줄기세포 개념 및 제한점 (Concept and limitation of breast cancer stem cells)

  • 김종빈;안정신;임우성;문병인
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.46-50
    • /
    • 2018
  • Cancer, a leading mortality disease following cardiovascular disease worldwide, has high incidence as one out of every four adults in Korea. It was known to be caused by several reasons including somatic mutation, activation of oncogene and chromosome aneuploidy. Cancer cells show a faster growth rate and have metastatic and heterogeneous cell populations compared to normal cells. Cancer stem cells, the most invested field in cancer biology, is a theory to explain heterogeneous cell populations of cancer cells among several characteristics of cancer cells, which is providing the theoretical background for incidence of cancer and treatment failure by drug resistance. Cancer stem cells initially explain heterogeneous cell populations of cancer cells based on the same markers of normal stem cells in cancer, in which only cancer stem cells showed heterogeneity of cancer cells and tumor initiating ability of leukemia. Based on these results, cancer stem cells were reported in various solid cancers such as breast cancer, liver cancer, and lung cancer. Breast cancer stem cells were first reported in solid cancer which had tumor initiating ability and further identified as anti-cancer drug resistance. There were several identification methods in breast cancer stem cells such as specific surface markers and culture methods. The discovery of cancer stem cells not only explains heterogeneity of cancer cells, but it also provides theoretical background for targeting cancer stem cells to complete elimination of cancer cells. Many institutes have been developing new anticancer drugs targeting cancer stem cells, but there have not been noticeable results yet. Many researchers also reported a necessity for improvement of current concepts and methods of research on cancer stem cells. Herein, we discuss the limitations and the perspectives of breast cancer stem cells based on the current concept and history.

Application of Stem Cells in Targeted Therapy of Breast Cancer: A Systematic Review

  • Madjd, Zahra;Gheytanchi, Elmira;Erfani, Elham;Asadi-Lari, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2789-2800
    • /
    • 2013
  • Background: The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. Material and Method: A systematic literature search was performed for original articles published from January 2007 until May 2012. Results: Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. $Wnt/{\beta}$-catenin signaling pathway has been also evidenced to be an attractive CSC-target. Conclusions: This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

High Expression of Stem Cell Marker ALDH1 is Associated with Reduced BRCA1 in Invasive Breast Carcinomas

  • Madjd, Zahra;Ramezani, Babak;Molanae, Saadat;Asadi-Lari, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2973-2978
    • /
    • 2012
  • Background: Cancer stem cells (CSC) have been described in a variety of malignancies, including breast carcinomas. Among several markers, aldehyde dehydrogenase 1 (ALDH1) has been identified as reliable for breast cancer stem cells. Knockdown of BRCA1 in primary breast epithelial cells leads to an increase in cells expressing ALDH1. Methods: We examined 127 breast carcinomas for expression of ALDH1, using immunohistochemistry and correlated with clinicopathological parameters as well as the BRAC1 status. Results: Comparing the results for both ALDH1 and BRCA1 expression showed a significant inverse association between the two, indicating that reduced BRCA1 was more often seen in breast cancer cells expressing ALDH1 (p-value = 0.044). A total of 24/110 (22%) of tumours displayed the ALDH1 + / BRCA1 -/low phenotype, which showed a trend for a relation with a high grade (p-value= 0.056). Cytoplasmic expression of ALDH1 was not correlated with tumour characteristics. Conclusion: Taken together, our findings suggest that increased ALDH1 is inversely correlated with decreased BRCA1 in a series of unselected breast carcinomas. Therefore, ALDH1 positive (cancer stem) cells with reduced BRCA1 phenotype may indicate a subset of patients for whom specific targeting of the CSC marker ALDH1 and more aggressive adjuvant treatment is appropriate.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications

  • Alanazi, Ibrahim O;Khan, Zahid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.445-453
    • /
    • 2016
  • Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.

The Cancer Stem Cell Theory: Is It Correct?

  • Yoo, Min-Hyuk;Hatfield, Dolph L.
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.514-516
    • /
    • 2008
  • The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

Dual Drug-Loaded Liposomes for Synergistic Efficacy in MCF-7 Breast Cancer Cells and Cancer Stem Cells

  • Park, Hee-Bin;Kim, Yun-Ji;Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • 대한의생명과학회지
    • /
    • 제25권2호
    • /
    • pp.159-169
    • /
    • 2019
  • Breast cancer stem cells (BCSCs) in breast cancer cells have self-renewal ability and differentiation potential. They are also resistant to drugs after chemotherapy. To overcome this resistance, we designed negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG)-based liposomes for drug delivery. These liposomes have enhanced the therapeutic effects of a range of antitumor therapies by increasing the cellular uptake and improving drug delivery to targets sites. In this study, we investigated whether DMPG-POPC liposomes, including the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC), can specifically bind to MCF-7 breast cancer cells and increase cellular uptake compared with that by CHOL-POPC liposomes. We also estimated the cytotoxicity of DMPG-POPC liposomes encapsulated with both metformin (Met) and sodium salicylate (Sod) against breast cancer cells and BCSCs compared with that of the free drugs. Our results demonstrated that these dual drug-encapsulated liposomes significantly enhanced the cytotoxic and anti-colony formation abilities compared with individual drug-encapsulated liposomes or free drugs in BCSCs. Overall, our results suggest that DMPG-POPC liposomes containing two drugs (Met + Sod) show promise for synergistic anti-cancer therapy of breast cancer by increasing drug delivery efficiency into breast cancer cells and BCSCs.

IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells

  • Yang, Hui-Ying;Qu, Rong-Mei;Lin, Xiao-Shan;Liu, Tong-Xin;Sun, Quan-Quan;Yang, Chun;Li, Xiao-Hong;Lu, Wei;Hu, Xiao-Fang;Dai, Jing-Xing;Yuan, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10115-10119
    • /
    • 2015
  • Purpose: The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. Materials and Methods: MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; ${\gamma}$-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. Results: AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. Conclusions: Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.

Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis

  • Koh, Eun-Young;You, Ji-Eun;Jung, Se-Hwa;Kim, Pyung-Hwan
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.384-396
    • /
    • 2020
  • Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.