Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2230

Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis  

Koh, Eun-Young (Department of Biomedical Laboratory Science, Konyang University)
You, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University)
Jung, Se-Hwa (Department of Biomedical Laboratory Science, Konyang University)
Kim, Pyung-Hwan (Department of Biomedical Laboratory Science, Konyang University)
Abstract
Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.
Keywords
apoptosis; breast cancer stem cell; CD66c; surface biomarker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang, R. and Rofstad, E.K. (2017). Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8, 35351-35367.   DOI
2 Jaggupilli, A. and Elkord, E. (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin. Dev. Immunol. 2012, 708036.
3 Johnson, B. and Mahadevan, D. (2015). Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin. Cancer Drugs 2, 100-111.   DOI
4 Jung, H.J. (2017). Chemical proteomic approaches targeting cancer stem cells: a review of current literature. Cancer Genomics Proteomics 14, 315-327.
5 Kim, M.H., Kim, M.H., Kim, K.S., Park, M.J., Jeong, J.H., Park, S.W., Ji, Y.H., Kim, K.I., Lee, T.S., Ryu, P.Y., et al. (2016). In vivo monitoring of CD44+ cancer stem-like cells by gamma-irradiation in breast cancer. Int. J. Oncol. 48, 2277-2286.   DOI
6 Kim, W.T. and Ryu, C.J. (2017). Cancer stem cell surface markers on normal stem cells. BMB Reports 50, 285.   DOI
7 Kim, Y.J., Park, H.B., Kim, P.H., Park, J.S., and Kim, K.S. (2017). Enhanced anti-cancer efficacy in MCF-7 breast cancer cells by combined drugs of metformin and sodium salicylate. Biomed. Sci. Lett. 23, 290-294.   DOI
8 Koch, U., Krause, M., and Baumann, M. (2010). Cancer stem cells at the crossroads of current cancer therapy failures--radiation oncology perspective. Semin. Cancer Biol. 20, 116-124.   DOI
9 Krishnamurthy, N. and Kurzrock, R. (2018). Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat. Rev. 62, 50-60.   DOI
10 Quintero, M., Adamoski, D., Reis, L.M.D., Ascencao, C.F.R., Oliveira, K.R.S., Goncalves, K.A., Dias, M.M., Carazzolle, M.F., and Dias, S.M.G. (2017). Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer 17, 727.   DOI
11 Ricardo, S., Vieira, A.F., Gerhard, R., Leitao, D., Pinto, R., Cameselle-Teijeiro, J.F., Milanezi, F., Schmitt, F., and Paredes, J. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64, 937-946.   DOI
12 Rizeq, B., Zakaria, Z., and Ouhtit, A. (2018). Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 109, 33-42.   DOI
13 Rodini, C.O., Lopes, N.M., Lara, V.S., and Mackenzie, I.C. (2017). Oral cancer stem cells - properties and consequences. J. Appl. Oral Sci. 25, 708-715.   DOI
14 Santiago-Gomez, A., Kedward, T., Simoes, B.M., Dragoni, I., NicAmhlaoibh, R., Trivier, E., Sabin, V., Gee, J.M., Sims, A.H., Howell, S.J., et al. (2019). PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer. Cancer Lett. 458, 66-75.   DOI
15 Scadden, D.T. (2006). The stem-cell niche as an entity of action. Nature 441, 1075-1079.   DOI
16 Wang, R., Lv, Q., Meng, W., Tan, Q., Zhang, S., Mo, X., and Yang, X. (2014). Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J. Thorac. Dis. 6, 829-837.
17 Scheel, C., Eaton, E.N., Li, S.H., Chaffer, C.L., Reinhardt, F., Kah, K.J., Bell, G., Guo, W., Rubin, J., Richardson, A.L., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926-940.   DOI
18 Shi, X., Chen, G., Liu, X., Qiu, Y., Yang, S., Zhang, Y., Fang, X., Zhang, C., and Liu, X. (2015). Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. Int. J. Mol. Med. 35, 31-38.   DOI
19 Song, M. and Giovannucci, E.L. (2015). Cancer risk: many factors contribute. Science 347, 728-729.   DOI
20 Vinogradov, S. and Wei, X. (2012). Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond.) 7, 597-615.   DOI
21 Yan, Y., Zuo, X., and Wei, D. (2015). Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl. Med. 4, 1033-1043.   DOI
22 Yang, F., Xu, J., Tang, L., and Guan, X. (2017). Breast cancer stem cell: the roles and therapeutic implications. Cell. Mol. Life Sci. 74, 951-966.   DOI
23 Balk-Moller, E., Kim, J., Hopkinson, B., Timmermans-Wielenga, V., Petersen, O.W., and Villadsen, R. (2014). A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am. J. Pathol. 184, 1198-1208.   DOI
24 Abboud, M.M., Al Awaida, W., Alkhateeb, H.H., and Abu-Ayyad, A.N. (2019). Antitumor action of amygdalin on human breast cancer cells by selective sensitization to oxidative stress. Nutr. Cancer 71, 483-490.   DOI
25 Ahn, S.M., Goode, R.J., and Simpson, R.J. (2008). Stem cell markers: insights from membrane proteomics? Proteomics 8, 4946-4957.   DOI
26 Bailey, P.C., Lee, R.M., Vitolo, M.I., Pratt, S.J.P., Ory, E., Chakrabarti, K., Lee, C.J., Thompson, K.N., and Martin, S.S. (2018). Single-cell tracking of breast cancer cells enables prediction of sphere formation from early cell divisions. iScience 8, 29-39.   DOI
27 Baumann, M., Krause, M., and Hill, R. (2008). Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545-554.   DOI
28 Blumenthal, R.D., Hansen, H.J., and Goldenberg, D.M. (2005). Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 65, 8809-8817.   DOI
29 Blumenthal, R.D., Leon, E., Hansen, H.J., and Goldenberg, D.M. (2007). Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 7, 2.   DOI
30 Britzen-Laurent, N., Lipnik, K., Ocker, M., Naschberger, E., Schellerer, V.S., Croner, R.S., Vieth, M., Waldner, M., Steinberg, P., Hohenadl, C., et al. (2013). GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis 34, 153-162.   DOI
31 Lee, J.Y., Kim, D.G., Kim, B.G., Yang, W.S., Hong, J., Kang, T., Oh, Y.S., Kim, K.R., Han, B.W., Hwang, B.J., et al. (2014). Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J. Cell Sci. 127, 4234-4245.   DOI
32 Zhong, G., Qin, S., Townsend, D., Schulte, B.A., Tew, K.D., and Wang, G.Y. (2019). Oxidative stress induces senescence in breast cancer stem cells. Biochem. Biophys. Res. Commun. 514, 1204-1209.   DOI
33 Zhu, P. and Fan, Z. (2018). Cancer stem cells and tumorigenesis. Biophys. Rep. 4, 178-188.   DOI
34 Skvortsov, S., Debbage, P., and Skvortsova, I. (2014). Proteomics of cancer stem cells. Int. J. Radiat. Biol. 90, 653-658.   DOI
35 Lee, E.C., Fitzgerald, M., Bannerman, B., Donelan, J., Bano, K., Terkelsen, J., Bradley, D.P., Subakan, O., Silva, M.D., Liu, R., et al. (2011). Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin. Cancer Res. 17, 7313-7323.   DOI
36 Lee, H., Jang, Y., Park, S., Jang, H., Park, E.J., Kim, H.J., and Kim, H. (2018). Development and evaluation of a CEACAM6-targeting theranostic nanomedicine for photoacoustic-based diagnosis and chemotherapy of metastatic cancer. Theranostics 8, 4247-4261.   DOI
37 Chen, L.S., Wang, A.X., Dong, B., Pu, K.F., Yuan, L.H., and Zhu, Y.M. (2012). A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer. Chin. J. Cancer 31, 564-572.   DOI
38 Calvet, C.Y., Andre, F.M., and Mir, L.M. (2014). The culture of cancer cell lines as tumorspheres does not systematically result in cancer stem cell enrichment. PLoS One 9, e89644.   DOI
39 Cameron, S., de Long, L.M., Hazar-Rethinam, M., Topkas, E., Endo-Munoz, L., Cumming, A., Gannon, O., Guminski, A., and Saunders, N. (2012). Focal overexpression of CEACAM6 contributes to enhanced tumorigenesis in head and neck cancer via suppression of apoptosis. Mol. Cancer 11, 74.   DOI
40 Cao, Z., Livas, T., and Kyprianou, N. (2016). Anoikis and EMT: lethal 'liaisons' during cancer progression. Crit. Rev. Oncog. 21, 155-168.   DOI
41 Colak, S. and Medema, J.P. (2014). Cancer stem cells--important players in tumor therapy resistance. FEBS J. 281, 4779-4791.   DOI
42 Crabtree, J.S. and Miele, L. (2018). Breast cancer stem cells. Biomedicines 6, 77.   DOI
43 Deonarain, M.P., Kousparou, C.A., and Epenetos, A.A. (2009). Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1, 12-25.   DOI
44 Luo, M., Clouthier, S.G., Deol, Y., Liu, S., Nagrath, S., Azizi, E., and Wicha, M.S. (2015). Breast cancer stem cells: current advances and clinical implications. Methods Mol. Biol. 1293, 1-49.   DOI
45 Leth-Larsen, R., Lund, R., Hansen, H.V., Laenkholm, A.V., Tarin, D., Jensen, O.N., and Ditzel, H.J. (2009). Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol. Cell. Proteomics 8, 1436-1449.   DOI
46 Lin, S.E., Barrette, A.M., Chapin, C., Gonzales, L.W., Gonzalez, R.F., Dobbs, L.G., and Ballard, P.L. (2015). Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice. Physiol. Rep. 3, e12657.   DOI
47 Lombardo, Y., de Giorgio, A., Coombes, C.R., Stebbing, J., and Castellano, L. (2015). Mammosphere formation assay from human breast cancer tissues and cell lines. J. Vis. Exp. 97, e52671.
48 Maugeri-Sacca, M., Vigneri, P., and De Maria, R. (2011). Cancer stem cells and chemosensitivity. Clin. Cancer Res. 17, 4942-4947.   DOI
49 Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., and Wicha, M.S. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253-1270.   DOI
50 Diaz-Fernandez, A., Miranda-Castro, R., de-Los-Santos-Alvarez, N., and Lobo-Castanon, M.J. (2018). Post-translational modifications in tumor biomarkers: the next challenge for aptamers? Anal. Bioanal. Chem. 410, 2059-2065.   DOI
51 Henderson, T., Chen, M., Darrow, M.A., Li, C.S., Chiu, C.L., Monjazeb, A.M., Murphy, W.J., and Canter, R.J. (2018). Alterations in cancer stem-cell marker CD44 expression predict oncologic outcome in soft-tissue sarcomas. J. Surg. Res. 223, 207-214.   DOI
52 Elias, D., Vever, H., Laenkholm, A.V., Gjerstorff, M.F., Yde, C.W., Lykkesfeldt, A.E., and Ditzel, H.J. (2015). Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene 34, 1919-1927.   DOI
53 Gemei, M., Mirabelli, P., Di Noto, R., Corbo, C., Iaccarino, A., Zamboli, A., Troncone, G., Galizia, G., Lieto, E., Del Vecchio, L., et al. (2013). CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer 119, 729-738.   DOI
54 Hamam, R., Hamam, D., Alsaleh, K.A., Kassem, M., Zaher, W., Alfayez, M., Aldahmash, A., and Alajez, N.M. (2017). Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 8, e3045.   DOI
55 Nassar, D. and Blanpain, C. (2016). Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11, 47-76.   DOI
56 Meacham, C.E. and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337.   DOI
57 Hertz, E., Cadona, F.C., Machado, A.K., Azzolin, V., Holmrich, S., Assmann, C., Ledur, P., Ribeiro, E.E., DE Souza Filho, O.C., Manica-Cattani, M.F., et al. (2015). Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs. Mol. Clin. Oncol. 3, 37-43.   DOI
58 Honeth, G., Bendahl, P.O., Ringner, M., Saal, L.H., Gruvberger-Saal, S.K., Lovgren, K., Grabau, D., Ferno, M., Borg, A., and Hegardt, C. (2008). The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 10, R53.   DOI
59 Hong, K.P., Shin, M.H., Yoon, S., Ji, G.Y., Moon, Y.R., Lee, O.J., Choi, S.Y., Lee, Y.M., Koo, J.H., Lee, H.C., et al. (2015). Therapeutic effect of anti CEACAM6 monoclonal antibody against lung adenocarcinoma by enhancing anoikis sensitivity. Biomaterials 67, 32-41.   DOI
60 Morrison, B.J., Hastie, M.L., Grewal, Y.S., Bruce, Z.C., Schmidt, C., Reynolds, B.A., Gorman, J.J., and Lopez, J.A. (2012). Proteomic comparison of mcf-7 tumoursphere and monolayer cultures. PLoS One 7, e52692.   DOI
61 Nie, S., McDermott, S.P., Deol, Y., Tan, Z., Wicha, M.S., and Lubman, D.M. (2015). A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations. Proteomics 15, 3772-3783.   DOI
62 Nilendu, P., Kumar, A., Kumar, A., Pal, J.K., and Sharma, N.K. (2018). Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int. J. Cancer 142, 7-17.   DOI
63 Panczyszyn, A. and Wieczorek, M. (2012). [Role of CEACAM in neutrophil activation]. Postepy Hig. Med. Dosw. (Online) 66, 574-582. Polish.   DOI
64 Pecina, P., Nuskova, H., Karbanova, V., Kaplanova, V., Mracek, T., and Houstek, J. (2018). Role of the mitochondrial ATP synthase central stalk subunits gamma and delta in the activity and assembly of the mammalian enzyme. Biochim. Biophys. Acta Bioenerg. 1859, 374-381.   DOI
65 Pogozheva, I.D., Tristram-Nagle, S., Mosberg, H.I., and Lomize, A.L. (2013). Structural adaptations of proteins to different biological membranes. Biochim. Biophys. Acta 1828, 2592-2608.   DOI
66 Qiu, X., Guo, H., Yang, J., Ji, Y., Wu, C.S., and Chen, X. (2018). Downregulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci. Rep. 8, 1679.   DOI