• Title/Summary/Keyword: Breast cancer cell growth

Search Result 364, Processing Time 0.031 seconds

Antitumoral Compound, MCS-202, an Effector on Proliferation and Morphology of Human Breast Tumor Cell Line, MCF-7 (인체유암세포주 MCF-7의 형태변화와 증식에 영향을 주는 항암활성물질, MCS-202)

  • 이성우;김세은;김항섭;김환묵;이정준;김영호
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.594-599
    • /
    • 1993
  • In the course of screening for microbial metabolites employing human cancer cell line, we identified a mycelial extract of Streptomyces sp. 1365, which are effective on growth inhibition and morphological change of MCF-7, human breasr cancer cell line. By repeased column chromatography and recrystallization process, yellow needle crystals were obtained as an active compound and identified as resistomycin by spectral analysis.

  • PDF

Indirubin-3-monoxime Prevents Tumorigenesis in Breast Cancer through Inhibition of JNK1 Activity

  • Kim, Mi-Yeon;Jo, Eun-Hye;Kim, Yong-Chul;Park, Hee-Sae
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • c-Jun N-terminal kinases (JNKs) have a Janus face, regulating both cell apoptosis and survival. The present study focused on understanding the function of JNK in tumor development and the chemoresistance underlying JNK-mediated cancer cell survival. We identified an inhibitor of JNK1, an important regulator of cancer cell survival. Kinase assay data showed that JNK1-dependent c-Jun phosphorylation was inhibited by indirubin derivatives. In particular, indirubin-3-monoxime (I3M) directly inhibited the phosphorylation of c-Jun in vitro, with a half inhibition dose (IC50) of 10 nM. I3M had a significant inhibitory effect on JNK1 activity. Furthermore, we carried out assays to determine the viability, migration, and proliferation of breast cancer cells. Our results demonstrated that cell growth, scratched wound healing, and colony forming abilities were inhibited by the JNK inhibitor SP600125 and I3M. The combination of SP600125 and I3M significantly decreased cancer cell proliferation, compared with either SP600125 or I3M alone. Our studies may provide further support for JNK1-targeting cancer therapy using the indirubin derivative I3M in breast cancer.

Anti-Cancer Effect of IN-2001 in MDA-MB-231 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. But their precise mechanism of action has not been elucidated. In this study, a novel synthetic inhibitor of HDAC, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide [IN-2001] was examined for its antitumor activity and the underlying molecular mechanisms of any such activity on human breast cancer cell lines. IN-2001 effectively inhibited cellular HDAC activity ($IC_{50}$ = 0.585 nM) inMDA-MB-231 human breast cancer cells. IN-2001 caused a significant dose-dependent inhibition of cell proliferation in estrogen receptor (ER) negative MDA-MB-231human breast cancer cells. Cell cycle analysis revealed that the growth inhibitory effects of IN-2001 might be attributed to cell cycle arrest at $G_0/G_1$ and/or $G_2$/Mphase and subsequent apoptosis in human breast cancer cells. These events are accompanied by modulating several cell cycle and apoptosis regulatory genes such as CDK inhibitors $p21^{WAF1}$ and $p27^{KIP1}$ cyclin D1, and other tumor suppressor genes such as cyclin D2. Collectively, IN-2001 inhibited cell proliferation and induced apoptosis in human breast cancer cells and these findings may provide new therapeutic approaches, combination of antiestrogen together with a HDAC inhibitor, in the hormonal therapy-resistant ER-negative breast cancers. In summary, our data suggest that this histone deacetylase inhibitor, IN-2001, is a novel promising therapeutic agent with potent antitumor effects against human breast cancers.

Inhibitory effect of Erythronium japonicum on the human breast cancer cell metastasis

  • You, Mi-Kyoung;Kim, Min-Sook;Rhyu, Jin;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, the inhibitory effect of Erythronium japonicum extracts on the metastasis of MDA-MB-231 human breast cancer cell line was determined. MATERIALS/METHODS: Cells were cultured with DMSO or with 50, 75, 100 or $250{\mu}g/ml$ of Erythronium japonicum methanol or ethanol extract. RESULTS: Both methanol and ethanol extracts significantly inhibited the growth and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. Erythronium japonicum extracts inhibited the adhesion of MDA-MB-231 cells. The invasion of breast cancer cells was suppressed by Erythronium japonicum extracts in a dose-dependent manner. The motility and MMP-2 and MMP-9 activities were also inhibited by both methanol and ethanol extracts. CONCLUSIONS: Our results collectively indicate that Erythronium japonicum extracts inhibit the growth, adhesion, migration and invasion as well as induce the apoptosis of human breast cancer cells. Clinical application of Erythronium japonicum as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

Effect of cell growth inhibition by eukaryotic initiation factor 2 derived peptides (진핵생물 개시인자 유래 펩타이드의 세포 성장 억제 효능)

  • Yu, HanJin;Lim, Kwang Suk
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In the process of protein transcription and translation, various protein complexes bind to DNA, and all processes are precisely controlled. Among the proteins constituting this complex, a peptide derived from eukaryotic initiation factor (eIF) 2 was synthesized. In addition, in order to increase the efficiency of transduction of this peptide into cells, peptides with polyarginine, one of the protein transduction domains (PTD), were synthesized. Cell growth inhibition was confirmed in HER2 positive breast cancer (SK-Br-3) and HER2 negative breast cancer (MDA-MB-231), and cardiomyocytes (H9c2). The peptide with polyarginine had high transduction efficiency in all cells, and had excellent cancer cell growth inhibitory effects. The peptide used in this study might be useful peptide therapeutics for the treatment of cancer through future research.

Effect of Extract of Acanthopanax Senticosus Fruit on Breast Cancer Cells (가시오가피 열매 추출물이 유방암 세포주에 미치는 영향)

  • Hwang, Jong-hyun;Kim, Seung-man;Hwang, Gwi-seo;Jeon, Chan-yong;Kang, Ki-sung
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.529-541
    • /
    • 2022
  • Objectives: Acanthopanax senticosus is a tree used in traditional medicine for various diseases. In this study, we investigated the anti-cancer effects of a water extract of Acanthopanax senticocus fruit (ASF) on 2 human breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The MTT assay was used to assess cell proliferation. The expression of apoptosis-related genes was assessed by quantitative real-time PCR. Results: ASF treatment caused a dose-dependent inhibition of cell growth in both estrogen-independent MDA-MB-231 and estrogen-dependent MCF-7 breast cancer cells. ASF decreased mRNA expression of the apoptotic suppressor gene Bcl-xL, and increased mRNA expression of proapoptotic genes. ASF increased the mRNA expression of p21 and RIP-1 in both cell types. ASF decreased the mRNA expression of survivin in the MCF-7 cell line. Conclusions: ASF exhibits anti-cancer activity involving apoptotic cell death.

Establishment of Paclitaxel-resistant Breast Cancer Cell Line and Nude Mice Models, and Underlying Multidrug Resistance Mechanisms in Vitro and in Vivo

  • Chen, Si-Ying;Hu, Sa-Sa;Dong, Qian;Cai, Jiang-Xia;Zhang, Wei-Peng;Sun, Jin-Yao;Wang, Tao-Tao;Xie, Jiao;He, Hai-Rong;Xing, Jian-Feng;Lu, Jun;Dong, Ya-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6135-6140
    • /
    • 2013
  • Background: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. Methods: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Results: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-${\pi}$ (GST-${\pi}$) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. Conclusion: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-${\pi}$.

IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells

  • Yang, Hui-Ying;Qu, Rong-Mei;Lin, Xiao-Shan;Liu, Tong-Xin;Sun, Quan-Quan;Yang, Chun;Li, Xiao-Hong;Lu, Wei;Hu, Xiao-Fang;Dai, Jing-Xing;Yuan, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10115-10119
    • /
    • 2015
  • Purpose: The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. Materials and Methods: MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; ${\gamma}$-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. Results: AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. Conclusions: Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.

Effects of Chelidonium Majus Extract on Apoptosis Induction of MDA-MB-231 Human Breast Cancer Cells (백굴채 추출물이 MDA-MB-231 유방암 세포주에서 세포사멸에 미치는 효과)

  • Jang, Sae-Byul;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • Objectives : In this study, we investigated the anti-proliferative and apoptosis inducing effect of water extract of Chelidonium majus (CM) on human breast cancer cell MDA-MB-231. Methods : The MTT assay was used to assess cell proliferation. The expression of apoptosis related gene was assessed by quantitative Real-time PCR. Cell apoptosis detected by flow cytometry using Annexin-V/PI staining. Results : Our data revealed that CM inhibited the cell growth in a dose dependent manner (0, 62.5, 125, 250, 500 μg/ml). CM increased mRNA expression of pro-apoptotic genes Bax, caspase-3, and caspase-9. Annexin-V/PI staining assays revealed that apoptosis-induced cell death increased in a dose-dependent manner in cells. Conclusions : CM induces cell death in MDA-MB-231 human breast cancer cell and shows potentials for use in cancer therapy as apoptosis-inducing agent.