• Title/Summary/Keyword: Brassica oleracea

Search Result 159, Processing Time 0.028 seconds

Study on the Content of ${NO_3$}^-$ of Leaf in Chinese Cabbage, Cabbage and Lettuce as Affected by Leaf Age (배추, 양배추, 양상추의 엽령별 ${NO_3$}^-$ 함량 차이에 관한 연구)

  • Sohn, Sang-Mok;Park, Yang-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.115-127
    • /
    • 1998
  • Under the visual judgement of consumers, to reduce nitrate intake through vegetables, this experimentation analyzed the content of nitrate, in heading leaf vegetables such as chinese cabbage(Brassica campestris L. ssp. perkinensis (Lour.) Rupr), cabbage(Brassica oleracea L. var. capitata) and lettuce(Lactuca sativa L.) by the leaf number. And the result is summarized as follows In the nitrate content change by the leaf number, the nitrate content is increased as it goes by from inner leaf to outer leaf and the nitrate content in leaf midrib is higher than that in leaf blade. In case of chinese cabbage, the nitrate content in the leaf midrib from the most inner leaf to the most outer leaf changed 40-3,177ppm and in the leaf blade it changed 40-2,887ppm. But the nitrate content in the leaf blade of cabbage from the most inner leaf to the most outer leaf changed 89~2,297ppm and in the leaf blade it changed 25~765ppm. In case of lettuce, the nitrate content change of the leaf midrib by the leaf position was 419~4,349ppm, and in the leaf blade it changed 260~2894ppm. It was conclude that the outer leaf of chinese cabbage, cabbage and lettuce should be removed to keep the lower nitrate intake by population before it is consumed.

  • PDF

Quality Properties and Storage Characteristics of Hamburger Patty Added with Purple Kohlrabi (Brassica oleracea var. gongylodes) (자색 콜라비를 첨가한 햄버거 패티의 품질 및 저장 특성)

  • Cha, Seon-Suk;Lee, Jae-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1994-2003
    • /
    • 2013
  • This study is performed to evaluate the effects of purple Kohlrabi addition on the quality properties and stability characteristics of hamburger patties during storage. The patties were prepared by adding 0% (N), 3.3% (K1), 6.6% (K2), and 10% (K3) of chopped purple Kohlrabi. Each patty was tested in triplicate and assigned to one of the four storage periods: 0, 5, 10, or 15 days. Addition of Kohlrabi decreased the protein and lipid contents, however, the ash and moisture contents were significantly increased. The total amino acid contents of N, K1, K2, and K3 were $15.34{\pm}1.02$, $14.57{\pm}1.28$, $15.10{\pm}1.17$, and $16.70{\pm}1.23$ mg/100 g, respectively. Palmitic acid was the most abundant among the saturated fatty acids, while oleic acid was the most abundant unsaturated fatty acids among the four groups. The water holding capacity value and cooking loss were not significantly different among the patties. In the textural characteristics, the addition of Kohlrabi increased the cohesiveness and chewiness values, but did not affect the hardness and springiness values of the patties. In the sensory evaluation, an addition of 10% Kohlrabi had the best score in color, flavor, and total acceptability. The pH of the patties decreased longer period storage; however, the total microbial counts, thiobarbituric acid (TBA) value and volatile basic nitrogen (VBN) content increased during storage. The TBA value and VBN content of the patties containing 10% Kohlrabi were lower than those of the N. Kohlrabi addition decreased the b (yellowness) and a (redness) values, and did not affect the L (lightness) value. Thus, this result suggests that adding Kohlrabi of 10% can be applied to patties for its functionality.

Phytotoxic Effect of Herbicides on Upland Crops and Weeds (밭작물(作物) 및 잡초(雜草)에 대한 제초제(除草劑)의 약해(藥害) 약효(藥效))

  • Ryang, H.S.;Chun, J.C.;Yim, J.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1984
  • This study was conducted to select herbicides effective for upland crops and to investigate the cause of crop injury in peanut cultivated with mulching. Crop such as radish (Raphanus acanthiformis Moor.), Chinese cabbage (Brassica raps L.), soybean (Glycine max Merr.), Peanut (Archis hypogaea L.), and marsh mallow (Malva olitoria Nakai) were tolerant to napropamide [2-(${\alpha}$-naphthoxy)-N, N-diethylpropionamide], alachlor [2-chloro-2', 6'-diethyl-N-(methoxymethyl) acetanilide], trifluralin (${\alpha},{\alpha},{\alpha}$-trifluoro-2, 6-dinitro-N, N-dipropylp-toluidine) and nitrofen (2,4-dichlorophenyl-p-nitrophenylether). Napropamide, diphenamide (N, N-dimethyl-2, 2-diphenylacetamide) and alachlor were safe for red pepper (Capsicum annuum L.), eggplant (Solanum melongena L. and tomato (Lycopersicon esculentum Mill.), while trifluralin, nitrofen and chlonitrofen (2,4,6-trichlorophenyl-4-nitrophenyl ether) could be used for water melon (Citrullus battich Forsk.), carrot (Daucus carota L.) and lettuce (Lactuca scariola L.) without crop injury. Out of nine major weed species studied, Capsella bursa-pastoris Medicus was the most resistant species to the herbicides tested. Napropamide and alachlor could not control P. hydropiper, while P. oleracea and C. album were tolerant to diphenamide :and alachlor, respectively. Urea herbicides such as methabenzthiazuron [3-(2-benzothiazolyl)-1,3-dimethylurea], linuron [3-(3, 4-dichlorophenyl~l-methoxy-i-methyl urea], and isoproturon [3-(4-isopropylphenyl) -1, 1-dimethylurea]gave a great injury to the crops studied. The weeding effect was greater for broadleaf weeds than for grasses. Isoproturon and linuron provided good selectivity for marsh mallow and carrot, respectively. In peanut, the crop injury caused by Four herbicides studied was greater when cultivated with mulching than when cultivated without mulching. With dinitroaniline herbicides the crop injury decreased as the gaseous herbicide was removed out of mulching. Alachlor gave little phytotoxicity to peanut grown under mulching condition and nitralin [4-(methylsuphonyl)-2, 6-dinitro-N, N-dipropylaniline] showed less toxicity to the peanut than pendimenthalin (3,4-dimethyl-2, 6-dinitro-N-1-ethyl propylaniline) and trifluralin.

  • PDF

Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere (Bacillus velezensis YP2 균주의 근권 정착에 의한 케일의 생육 촉진 및 건조 스트레스 완화 효과)

  • Kim, Da-Yeon;Han, Ji-Hee;Kim, Jung-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.217-232
    • /
    • 2018
  • Drought is a major obstacle to high agricultural productivity, worldwide. In drought, it is usually presented by the simultaneous action of high temperature and drying. Also there are negative effects of plant growth under drying conditions. In this study, the effect of Bacillus velezensis YP2 on plant growth-promotion and soil drying stress tolerance of kale plants, Brassica oleracea var. alboglabra Bailey, were investigated under two different conditions; greenhouse and field environments. Root colonization ability of B. velezensis YP2 was also analysed by using plating culture method. As a result of the greenhouse test, the YP2 strain significantly promoted the growth of kale seedlings in increasement of 26.7% of plant height and 142.2% of shoot fresh weight compared to control. B. velezensis YP2 have the mitigation effect of drying injury of kale by decreasing of 39.4% compared to control. In the field test, B. velezensis YP2 strain was also found to be effective for plant growth-promotion and mitigation of drying stress injury on kale plants. Especially, relative water contents (RWC; %) were higher in B. velezensis YP2 treated kales than in control at 7, 10, 14 day after non-watering. The root colonization ability of YP2 strain was continued at least for 21 days after soil drenching treatment of B. velezensis YP2. Our result suggested that enhancement of plant growth and drying injury reduction of kale plants were involved in kale root colonization by B. velezensis YP2, which might be contributed to increasing water availability of plants. Consequentially, the use of B. velezensis YP2 might be a beneficial influence for improving productivity of kale plants under drying stress conditions.

Microbial Assessment of Wild Cabbage and its Control (양배추의 미생물 오염도 평가 및 제어)

  • Cho, Joon-Il;Kim, Keun-Sung;Bahk, Gyung-Jin;Ha, Sang-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.162-167
    • /
    • 2004
  • In this study, untreated (UT), water soaking (WT), and sanitizing solutions [chlorine at 100 ppm (CL): ethanol at 10% (ET); hydrogen peroxide at 1% (HP); chlorine at 100 ppm + ethanol at 10%(CE); chlorine at 100 ppm + hydrogen peroxide at 1% (CH); ethanol at 10% + hydrogen peroxide at 1% (EH); chlorine at 100 ppm + ethanol at 10% + hydrogen peroxide at 1% (CEH)] were compared in terms of their antimicrobial effectiveness against natural microflora of wild cabbage (Brassica oleracea var. capitata). All samples were kept in sanitizing solutions for 2 min, and effectiveness of sanitizing agents was evaluated based on number of decimal reduction of total aerobic mesophilic, total coliforms, E. coli, lactic acid bacteria, and yeast and mold counts. Average initial levels of these organisms in samples were $9.21{\pm}0.15,\;6.60{\pm}0.06,\;6.08{\pm}0.03,\;and\;3.66{\pm}0.08\;log_{10}\;CFU/g$ for total aerobic mesophilic bacteria, total coliforms, lactic acid bacteria, and yeasts and molds, respectively, Escherichia coli was not detected in any tested samples. Decimal reduction of populations of total aerobic mesophilic, total coliforms, E. coli, lactic acid bacteria, and yeasts and molds were: in $WT\;8.09,\;5.36,\;5.82,\;and\;3.57 log_{10}\;CFU/g;\;in \;CL\;7.39,\;4.10\;5.24,\;2.45\;log_{10}\;CFU/g;\;in\;ET\;6.78,\;4.23,\;5.20,\;2.50\;log_{10}\;CFU/g;\;in\;HP\;6.11,\;4.27,\;5.28,\;2.46\;log_{10}\;CFU/g;\;in\;CE\;6.18,\;4.26,\;5.31,\;2.49\;log_{10}\;CFU/g;\;in\;CH\;6.10,\;3.77,\;5.33,\;2.46\;log_{10}\;CFU/g;\;in\;EH\;6.07\;3.82,\;4.76,\;2.41\;log_{10}\;CFU/g;\;and\;in\;CEH\;5.27,\;3.45,\;4.45,\;2.15\;log_{10}\;CFU/g,$ respectively. Statistical analysis of the results showed effectiveness of CEH sanitizing solution for elimination of microbial contamination was the highest among all sanitizer treatments.

Quality Change during Harvest Time and Storage of Various Cabbages Grown on High Land by Different Transplanting Times (정식시기에 따른 고랭지 양배추의 수확 및 저장중 품질변화)

  • Eum, Hyang-Lan;Lee, Young-Hoon;Hong, Sae-Jin;Shin, Il-Sheob;Yeoung, Young-Rok
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • This study was conducted to investigate the effect of climate conditions during cultivation and harvesting on the quality and storability of fresh bulb cabbage (Brassica oleracea L. var. capitata). Plug seedlings of six cabbage cultivars were transplanted to Gangneung-Wonju University high elevation research station in Gangwon province (780 m above sea level, lat. $37.5^{\circ}N$.) and harvested with four different harvest times like August 3 ($1^{st}$), August 13 ($2^{nd}$), August 23 ($3^{rd}$), and September 10 ($4^{th}$), respectively from 50 days after transplanting. Weight loss, Hunter color factors, firmness, and soluble solids content (SSC) of the cabbage bulbs were investigated during storage at $3^{\circ}C$ (85% RH) and $25^{\circ}C$ (60% RH). Decreased bulb weight and poor quality cabbages were apparent at the late transplanting (July 14) and harvest (September 10) respectively. Quality index such as firmness and SSC at August 23 ($3^{rd}$) harvested cabbage was better than August 3 ($1^{st}$) and August 13 ($2^{nd}$) cabbages due to the good weather condition just before harvesting. The cv. 'Speed king' and 'Minix 40' showed good qualities among the cultivars, especially when the bulbs were harvested during sunny day conditions from one week before harvesting. Also SSC was influenced by weather condition before harvesting rather than transplanting date, while firmness was influenced by transplanting and harvest date. However, the differences among the cultivars were not significant. The potential of storage as maintaining the quality was different, depending on weather conditions at harvest time. Generally the storage periods of six cultivars were around 3~5 days and 9~10 days at room and low temperature, respectively. However, the August 3 ($1^{st}$) harvested cabbage lost their marketable quality very fast because of rainy and cloudy weather condition before harvesting and also storability of bulbs was 2 days and 4 days at room temperature and $3^{\circ}C$, respectively. Quality index was also not significant difference among cultivars.

Quality Characteristics of Cabbage Kimchi by Different Packaging materials (포장재에 따른 양배추 김치의 품질특성)

  • Seo, Hae-Jung;Han, Seo-Young;Choi, Hye-Sun;Han, Gwi-Jung;Park, Hye-Young
    • Korean journal of food and cookery science
    • /
    • v.28 no.2
    • /
    • pp.207-214
    • /
    • 2012
  • In this study, cabbage ($Brassica$ $oleracea$ var. $capitata$) Kimchi was made packed into four kinds of packaging materials, PET vessel, PP tray, OPP/AL/PE film and Nylon/PE/LLDP film, and the effects of these packaging materials on Kimchi quality characteristics, such as lactic acid bacteria counts, salinity, sugar contents, pH, total acidity, electron donating ability were examine as well as their effects on the sensory qualities after storage at a temperature of $4^{\circ}C$. The pH change ranged from pH 6.24 to 6.43 shortly after manufacture, and did not significantly change until 7 days of storage. However, it began to decrease rapidly after 14 days. On the 35th day of storage, the acidity was 0.79% in the PET vessel and 0.83% in OPP/AL/PE. Therefore, the PET vessel and OPP/AL/PE were considered appropriate packaging materials for Kimchi storage. The salinity did not change significantly during the storage period, and the sugar content generally increased in the four kinds of packaging materials, but decreasing after the 7th day of storage. After 14 days of storage, the Kimchi stored in the OPP/AL/PE film showed the highest lactic acid bacteria counts. Although the electron donating ability was the highest after proper time for fermentation, it decreased in all the packaging materials after the proper time for fermentation. However, the OPP/AL/PE film had an antioxidant potential of up to 93.18%. In the sensory evaluation, fermented Kimchi was found to be superior unfermented Kimchi. In addition, the Kimchi stored in the OPP/AL/PE film for 14 days showed the high score of 6.70 and 6.60 in overall preference. Therefore, the results of this study provide basic knowledge on the fermentation level and packaging material's condition for commercialization of small packed cabbage Kimchi. Henceforth, industrialization must include a variety of studies under these conditions to increase the merchantability.

Pathogenicity of Erwinia carotovora subsp. carotovora, Pseudomonas marginalis pv. marginalis and Pseudomonas viridiflava to Flowering Plants in Korea (화훼류(花卉類)에 대한 Erwinia carotovora subsp. carotovora, Pseudomonas marginalis pv. marginalis, Pseudomonas viridiflava의 병원성(病原性))

  • Choi, Jae Eul;Ahn, Byung Kyu;Han, Kwang Seop;Kim, Han Yong
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 1990
  • Erwinia carotovora subsp. carotovora, Pseudomonas viridiflava and Pseudomonas marginalis pv. marginalis were tested for their pathogenicity to 35 kinds of domestic flowering plants. Among them, the following domestic flowering plants showed clear symptoms. 1. Erwinia carotovora subsp. carotovora : (Needle inoculation). Carnation(Dianthus catgophylius L.), madagascar periwinkle(Vinca rosea L.), flower gentle(Amaranthus tricolor L.), snapdragon(Antirrhinum majus L.), chrysanthemum(Chrysanthemum morifolium Ram.), mexiacan ageratum(Ageratum houstonianum Mill), china aster(Callistephus chinensis), youth and old age(Zinnia elegans Jacq.), common nasturtium(Tropaeorum majus L.), scarlet sage(Salvia splendens F.), dahlia(Dahia hybrida), pot marigold(Calendula officinalis L.), begonia treevine(Cissus dicolor Blume), cosmos(Cosmos bipinnatus Cav.), globe amaranth(Gomphrena globosa L.), black eyed susan(Thumbergia alata Bojer), common gypsophila(Gypsophila elegans Bieb.), ghent gladiolus(Gladiolus gandavensis Van.), indian shot(Canna orchiodes Bailey), iris(Iris nertschinskia Lodd), cyclamen primula(Dodecatheon meadia L.), scarlet kafir lily(Clivia miniata Regel.), flowering cabbage(Brassica oleracea L.). (Spray inoculation). Carnation, madagascar periwinkle, flower gentle, snapdragon, common nasturtium, ghent gladiolus, indian shot, cyclamen primula. 2. Pseudomonas viridiflava : (Needle inoculation). Carnation, madagascar periwinkle, snapdragon, chrysanthemum, cockscomb, mexican ageratum, china aster, common nasturtium, common petunia(Petunia hybrida Vilm), pot marigold, begonia treevine, cosmos, black eyed susan, common gypsophila, ghent gladiolus, indian shot, cyclamen primula, scarlet kafir-lily, flowering cabbage. (Spray inoculation). Common nasturtium, ghent gladiolus, indian shot, cyclamen primula. 3. Pseudomonas marginalis pv. marginalis : (Needle inoculation). Carnation, madagascar periwinkle, flower gentle, snapdragon, cockscomb, mexican ageratum, youth and old age, common nasturitium, common petunia, sweet william(Dianthus barbatus L.), pot marigold, begonia treevine, cosmos, common gypsophila, ghent gladiolus, indian shot, iris, cyclamen primula, scarlet kafir-Lily, flowering cabbage. (Spray inoculation). Common nasturtium, ghent gladiolus, indian shot, cyclamen primula.

  • PDF

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.