Browse > Article
http://dx.doi.org/10.11625/KJOA.2018.26.2.217

Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere  

Kim, Da-Yeon (농촌진흥청 국립농업과학원)
Han, Ji-Hee (농촌진흥청 국립농업과학원)
Kim, Jung-Jun (농촌진흥청 국립농업과학원)
Lee, Sang-Yeob (농촌진흥청 국립농업과학원)
Publication Information
Korean Journal of Organic Agriculture / v.26, no.2, 2018 , pp. 217-232 More about this Journal
Abstract
Drought is a major obstacle to high agricultural productivity, worldwide. In drought, it is usually presented by the simultaneous action of high temperature and drying. Also there are negative effects of plant growth under drying conditions. In this study, the effect of Bacillus velezensis YP2 on plant growth-promotion and soil drying stress tolerance of kale plants, Brassica oleracea var. alboglabra Bailey, were investigated under two different conditions; greenhouse and field environments. Root colonization ability of B. velezensis YP2 was also analysed by using plating culture method. As a result of the greenhouse test, the YP2 strain significantly promoted the growth of kale seedlings in increasement of 26.7% of plant height and 142.2% of shoot fresh weight compared to control. B. velezensis YP2 have the mitigation effect of drying injury of kale by decreasing of 39.4% compared to control. In the field test, B. velezensis YP2 strain was also found to be effective for plant growth-promotion and mitigation of drying stress injury on kale plants. Especially, relative water contents (RWC; %) were higher in B. velezensis YP2 treated kales than in control at 7, 10, 14 day after non-watering. The root colonization ability of YP2 strain was continued at least for 21 days after soil drenching treatment of B. velezensis YP2. Our result suggested that enhancement of plant growth and drying injury reduction of kale plants were involved in kale root colonization by B. velezensis YP2, which might be contributed to increasing water availability of plants. Consequentially, the use of B. velezensis YP2 might be a beneficial influence for improving productivity of kale plants under drying stress conditions.
Keywords
Bacillus velezensis; drying stress; plant growth-promotion; root colonization;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Goltsev, V., I. Zaharieva, P. Chernev, M. Kouzmanova, H. M. Kalaji, I. Yordanov, V. Krasteva, V. Alexandrov, D. Stefanov, and S. I. Allakhverdiev. 2012. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim. Biophys. Acta, Bioenergetics 1817(8): 1490-1498.   DOI
2 Gupta, G., S. S. Parihar, N. K. Ahirwar, S. K. Snehi, and V. Singh. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7(2): 096-102.
3 Haggag, W. and S. Timmusk. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104(4): 961-969.   DOI
4 Hardoim, P. R., L. S. van Overbeek, and J. D. van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16(10): 463-471.   DOI
5 Hoekstra, F. A., E. A. Golovina, and J. Buitink. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6(9): 431-438.   DOI
6 Hornby, D., G. Bateman, R. Payne, M. Brown, D. Henden, and R. Campbell. 1993. Field tests of bacteria and soil-applied fungicides as control agents for take-all in winter wheat. Ann. Appl. Biol. 122(2): 253-270.   DOI
7 Jaleel, C. A., P. Manivannan, A. Wahid, M. Farooq, H. J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1): 100-105.
8 Jee, H.-J., K.-Y. Ryu, J.-H. Park, D.-H. Choi, G.-H. Ryu, J.-G. Ryu, and S.-S. Shen. 2008. Effect of COY (Cooking oil and yolk mixture) and ACF (Air-circulation fan) on control of powdery mildew and production of organic lettuce. Korean Soc. Plant Pathol. 14(1): 51-56.
9 Kalaji, H. and E. Nalborczyk. 1991. Gas exchange of barley seedlings growing under salinity stress. Photosyn. 25(2): 197-202.
10 Johansson, J. F., L. R. Paul and R. D. Finlay. 2004. Microbial interactions in the mycorrhi- zosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48(1): 1-13.   DOI
11 Khan, M. S., A. Zaidi, and P. A. Wani. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron. Sustain. Dev. 27(1): 29-43.   DOI
12 Kim, S. Y., M. K. Sang, H.-Y. Weon, Y.-A. Jeon, J. H. Ryoo, and J. Song. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20(3): 189-196.   DOI
13 Krzyzanowska, D., M. Obuchowski, M. Bikowski, M. Rychlowski, and S. Jafra. 2012. Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sens. 12(12): 17608-17619.   DOI
14 Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25(2): 275-294.   DOI
15 Mahaffee, W. F. and P. A. Backman. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathol. 83(10): 1120-1125.   DOI
16 Lee, S. Y., H. Y. Weon, J. J. Kim, and J. H. Han. 2016. Biocontrol of leaf mustard powdery mildew caused by Erysiphe cruciferarm using Bacillus velezensis YP2. Korean J. Pestic. Sci. 20(4): 369-374.   DOI
17 Lim, J.-H. and S.-D. Kim. 2013. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant pathol. J. 29(2): 201.   DOI
18 Liu, Y., N. Zhang, M. Qiu, H. Feng, J. M. Vivanco, Q. Shen, and R. Zhang. 2014. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 353(1): 49-56.   DOI
19 Long, H. H., D. G. Sonntag, D. D. Schmidt, and I. T. Baldwin. 2010. The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol. 185(2): 554- 567.   DOI
20 Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Status and production of vegetable plants in greenhouse 2016. Horticulture and Industry Division. MAFRA. 99-116.
21 Meng, Q., H. Jiang, and J. J. Hao. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Control. 98: 18-26.   DOI
22 Pandin, C., D. Le Coq, A. Canette, S. Aymerich, and R. Briandet. 2017. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb. Biotechnol. 10(4): 719-734.   DOI
23 Namgung, M., B. S. Kim, S. J. Heo, Y. B. Choi, J. H. Hur, and D. H. Park. 2014. Assessment of pre-harvest environmental factors in domestic production of organic lettuce. Korean J. Pestic. Sci. (2): 88-94.
24 Nejad, P. and P. A. Johnson. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol. Control. 18(3): 208-215.   DOI
25 Palencia, P., F. Martínez, M. Pestana, J. A. Oliveira, and P. J. Correia. 2015. Effect of Bacillus velezensis and Glomus intraradices on fruit quality and growth parameters in strawberry soilless growing system. Hort. J. 84(2): 122-130.   DOI
26 Park, J.-W., S. Jahaggirdar, Y.-E. Cho, K.-S. Park, S.-H. Lee, and K.-S. Park. 2010. Evaluation of Bacillus subtilis native strains for plant growth promotion and induced systemic resistance in tomato and red-pepper. Korean J. Pestic. Sci. 14(4): 407-414.
27 Rubin, R. L., K. J. van Groenigen, and B. A. Hungate. 2017. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil. 416: 309-323.   DOI
28 Ramegowda, V. and M. Senthil-Kumar. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54.   DOI
29 Rascio, N. and N. L. Rocca. 2005. Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Critic. Rev. Plant Sci. 24(3): 209-225.   DOI
30 Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161(11): 1189-1202.   DOI
31 Ryan, R. P., K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278(1): 1-9.   DOI
32 Saeidi, M. and R. Zabihi-e-Mahmoodabad. 2009. Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Res. J. Environ. Sci. 3(3): 345-350.   DOI
33 Sarbadhikary, S. B. and N. C. Mandal. 2017. Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere. 3: 170-175.   DOI
34 Singh, J. S., S. Koushal, A. Kumar, S. R. Vimal, and V. K. Gupta. 2016. Book review: microbial inoculants in sustainable agricultural productivity-Vol. II: functional application. Frontiers in Microbiology 7.
35 Sturz, A. and J. Nowak. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15(2): 183-190.   DOI
36 Yoo, S.-J. and M. K. Sang. 2017. Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res. Plant Dis. 23(2): 99-113.   DOI
37 Szczech, M. and M. Shoda. 2006. The effect of mode of application of Bacillus subtilis RB14C on its efficacy as a biocontrol agent against Rhizoctonia solani. J. Phytopathol. 154(6): 370-377.   DOI
38 Tahvonen, R., A. Hannukkala, and H. Avikainen. 1995. Effect of seed dressing treatment of Streptomyces griseoviridis on barley and spring wheat in field experiments. Agric. Sci. Finland 4(4): 419-427.
39 Timmusk, S., I. A. A. El-Daim, L. Copolovici, T. Tanilas, A. Kannaste, L. Behers, E. Nevo, G. Seisenbaeva, E. Stenstrom, and U. Niinemets. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE. 9(5): e96086.   DOI
40 Xu, Z., R. Zhang, D. Wang, M. Qiu, H. Feng, N. Zhang, and Q. Shen. 2014. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl. Environ. Microbiol. 80(9): 2941-2950.   DOI
41 Zandalinas, S. I., R. Mittler, D. Balfagon, V. Arbona, and A. Gomez‐Cadenas. 2017. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. doi: 10.1111.ppl.12540 (Epub ahead of print).   DOI
42 Zhang, J., J. Yang, P. An, W. Ren, Z. Pan, Z. Dong, G. Han, Y. Pan, S. Pan, and H. Tian. 2017. Enhancing soil drought induced by climate change and agricultural practices: Observational and experimental evidence from the semiarid area of northern China. Agric. For. Meteorol. 243: 74-83.   DOI
43 Chandler, D., G. Davidson, W. Grant, J. Greaves, and G. Tatchell. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci. Technol. 19(5): 275-283.   DOI
44 Zhou, H., C. Luo, X. Fang, Y. Xiang, X. Wang, R. Zhang, and Z. Chen. 2016. Loss of gltb inhibits biofilm formation and biocontrol efficiency of Bacillus subtilis Bs916 by altering the production of ${\gamma}$-polyglutamate and three lipopeptides. PLoS ONE. 11(5): e0156247.   DOI
45 Almaghrabi, O. A., S. I. Massoud, and T. S. Abdelmoneim, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20(1): 57-61.   DOI
46 Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57: 233-266.   DOI
47 Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6(1): 263-294.   DOI
48 Benizri, E., E. Baudoin, and A. Guckert. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Technol. 11(5): 557-574.   DOI
49 Bhardwaj, D., M. W. Ansari, R. K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fac. 13(1): 66.   DOI
50 Borriss, R. 2015. Bacillus, a plant-beneficial bacterium. Principles of Plant-Microbe Interactions. Springer. 379-391.
51 Choudhury, F. K., R. M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90(5): 856-867.   DOI
52 Compant, S., C. Clement, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42(5): 669-678.   DOI
53 Doty, S. L. 2011. Growth-promoting endophytic fungi of forest trees. For. Sci. 80: 151-156.
54 El Daim, I. A. A., P. Haggblom, M. Karlsson, E. Stenstrom, and S. Timmusk. 2015. Paenibacillus polymyxa A26 Sfp-type PPTase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum in kernel assay. Front. Plant Sci. 6.
55 Fravel, D. 2005. Commercialization and implementation of biocontrol 1. Annu. Rev. Phytopathol. 43: 337-359.   DOI
56 Gerhardson, B. and M. Larsson. 1991. Effects of Trichoderma and other fungal antagonists on the incidence of fungal pathogens. Biotic interactions and soil-borne diseases. 121-128.