DOI QR코드

DOI QR Code

Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere

Bacillus velezensis YP2 균주의 근권 정착에 의한 케일의 생육 촉진 및 건조 스트레스 완화 효과

  • 김다연 (농촌진흥청 국립농업과학원) ;
  • 한지희 (농촌진흥청 국립농업과학원) ;
  • 김정준 (농촌진흥청 국립농업과학원) ;
  • 이상엽 (농촌진흥청 국립농업과학원)
  • Received : 2017.10.31
  • Accepted : 2018.05.24
  • Published : 2018.05.31

Abstract

Drought is a major obstacle to high agricultural productivity, worldwide. In drought, it is usually presented by the simultaneous action of high temperature and drying. Also there are negative effects of plant growth under drying conditions. In this study, the effect of Bacillus velezensis YP2 on plant growth-promotion and soil drying stress tolerance of kale plants, Brassica oleracea var. alboglabra Bailey, were investigated under two different conditions; greenhouse and field environments. Root colonization ability of B. velezensis YP2 was also analysed by using plating culture method. As a result of the greenhouse test, the YP2 strain significantly promoted the growth of kale seedlings in increasement of 26.7% of plant height and 142.2% of shoot fresh weight compared to control. B. velezensis YP2 have the mitigation effect of drying injury of kale by decreasing of 39.4% compared to control. In the field test, B. velezensis YP2 strain was also found to be effective for plant growth-promotion and mitigation of drying stress injury on kale plants. Especially, relative water contents (RWC; %) were higher in B. velezensis YP2 treated kales than in control at 7, 10, 14 day after non-watering. The root colonization ability of YP2 strain was continued at least for 21 days after soil drenching treatment of B. velezensis YP2. Our result suggested that enhancement of plant growth and drying injury reduction of kale plants were involved in kale root colonization by B. velezensis YP2, which might be contributed to increasing water availability of plants. Consequentially, the use of B. velezensis YP2 might be a beneficial influence for improving productivity of kale plants under drying stress conditions.

전 세계적인 지구 온난화로 인한 가뭄은 농작물의 생산성을 저해하는 주요 원인 중 하나이며, 고온과 건조가 복합적으로 작용하여 식물 생장을 감소시킨다. 본 연구에서는 Bacillus velezensis YP2 균주의 식물 생육촉진 및 건조 스트레스 내성 증진 효과를 온실과 시설하우스 포장에서 조사하였다. 또한 B. velezensis YP2 균주의 처리 전과 후 케일 근권과 뿌리에서 배양법에 의한 상대 정량 방법으로 B. velezensis YP2 균주의 근권 및 뿌리 정착능을 분석하였다. 온실 검정 결과 YP2 균주 처리구에서는 무처리구와 비교하여 케일 유묘의 초장 26.7% 및 지상부 생체중 142.2% 증가시키는 효과가 있었다. 또한 B. velezensis YP2 처리구에서는 무처리구와 비교하여 39.4%의 건조 피해 경감 효과가 있었다. 시설하우스 포장 검정 결과에서도 B. velezensis YP2 균주 처리에 의한 케일의 생장촉진 효과와 건조 스트레스 내성 증진 효과가 있었으며, B. velezensis YP2 처리구에서 케일 잎의 상대수분함량이 무처리구와 비교하여 7, 10, 14일에 모두 높은 것으로 나타났다. B. velezensis YP2 균주의 뿌리 정착능 분석 결과, 균주 처리 21일까지 케일 근권 및 뿌리 균밀도가 무처리구와 비교하여 B. velezensis YP2 처리구에서 유의하게 높은 것으로 나타났다. 따라서 균주 처리 후 최소한 21일이 경과할 때까지 B. velezensis YP2 균주가 케일 근권과 뿌리에 정착하여 식물과 상호작용함으로서 생육을 촉진하고 식물의 물 이용률을 증가시켜 건조 스트레스 내성을 증진하는 데 관련이 있을 것으로 판단된다. 본 연구 결과를 통하여 B. velezensis YP2 균주는 가뭄으로 인한 건조한 토양 조건에서 작물 생산성을 향상시키는 가능성이 있는 유용한 미생물로 이용할 수 있을 것으로 생각된다.

Keywords

References

  1. Almaghrabi, O. A., S. I. Massoud, and T. S. Abdelmoneim, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20(1): 57-61. https://doi.org/10.1016/j.sjbs.2012.10.004
  2. Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57: 233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
  3. Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6(1): 263-294. https://doi.org/10.1146/annurev.py.06.090168.001403
  4. Benizri, E., E. Baudoin, and A. Guckert. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Technol. 11(5): 557-574. https://doi.org/10.1080/09583150120076120
  5. Bhardwaj, D., M. W. Ansari, R. K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fac. 13(1): 66. https://doi.org/10.1186/1475-2859-13-66
  6. Borriss, R. 2015. Bacillus, a plant-beneficial bacterium. Principles of Plant-Microbe Interactions. Springer. 379-391.
  7. Chandler, D., G. Davidson, W. Grant, J. Greaves, and G. Tatchell. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci. Technol. 19(5): 275-283. https://doi.org/10.1016/j.tifs.2007.12.009
  8. Choudhury, F. K., R. M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90(5): 856-867. https://doi.org/10.1111/tpj.13299
  9. Compant, S., C. Clement, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42(5): 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  10. Doty, S. L. 2011. Growth-promoting endophytic fungi of forest trees. For. Sci. 80: 151-156.
  11. El Daim, I. A. A., P. Haggblom, M. Karlsson, E. Stenstrom, and S. Timmusk. 2015. Paenibacillus polymyxa A26 Sfp-type PPTase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum in kernel assay. Front. Plant Sci. 6.
  12. Fravel, D. 2005. Commercialization and implementation of biocontrol 1. Annu. Rev. Phytopathol. 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  13. Gerhardson, B. and M. Larsson. 1991. Effects of Trichoderma and other fungal antagonists on the incidence of fungal pathogens. Biotic interactions and soil-borne diseases. 121-128.
  14. Goltsev, V., I. Zaharieva, P. Chernev, M. Kouzmanova, H. M. Kalaji, I. Yordanov, V. Krasteva, V. Alexandrov, D. Stefanov, and S. I. Allakhverdiev. 2012. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim. Biophys. Acta, Bioenergetics 1817(8): 1490-1498. https://doi.org/10.1016/j.bbabio.2012.04.018
  15. Gupta, G., S. S. Parihar, N. K. Ahirwar, S. K. Snehi, and V. Singh. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7(2): 096-102.
  16. Haggag, W. and S. Timmusk. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104(4): 961-969. https://doi.org/10.1111/j.1365-2672.2007.03611.x
  17. Hardoim, P. R., L. S. van Overbeek, and J. D. van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16(10): 463-471. https://doi.org/10.1016/j.tim.2008.07.008
  18. Hoekstra, F. A., E. A. Golovina, and J. Buitink. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6(9): 431-438. https://doi.org/10.1016/S1360-1385(01)02052-0
  19. Hornby, D., G. Bateman, R. Payne, M. Brown, D. Henden, and R. Campbell. 1993. Field tests of bacteria and soil-applied fungicides as control agents for take-all in winter wheat. Ann. Appl. Biol. 122(2): 253-270. https://doi.org/10.1111/j.1744-7348.1993.tb04031.x
  20. Jaleel, C. A., P. Manivannan, A. Wahid, M. Farooq, H. J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1): 100-105.
  21. Jee, H.-J., K.-Y. Ryu, J.-H. Park, D.-H. Choi, G.-H. Ryu, J.-G. Ryu, and S.-S. Shen. 2008. Effect of COY (Cooking oil and yolk mixture) and ACF (Air-circulation fan) on control of powdery mildew and production of organic lettuce. Korean Soc. Plant Pathol. 14(1): 51-56.
  22. Johansson, J. F., L. R. Paul and R. D. Finlay. 2004. Microbial interactions in the mycorrhi- zosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48(1): 1-13. https://doi.org/10.1016/j.femsec.2003.11.012
  23. Kalaji, H. and E. Nalborczyk. 1991. Gas exchange of barley seedlings growing under salinity stress. Photosyn. 25(2): 197-202.
  24. Khan, M. S., A. Zaidi, and P. A. Wani. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron. Sustain. Dev. 27(1): 29-43. https://doi.org/10.1051/agro:2006011
  25. Kim, S. Y., M. K. Sang, H.-Y. Weon, Y.-A. Jeon, J. H. Ryoo, and J. Song. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20(3): 189-196. https://doi.org/10.7585/kjps.2016.20.3.189
  26. Krzyzanowska, D., M. Obuchowski, M. Bikowski, M. Rychlowski, and S. Jafra. 2012. Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sens. 12(12): 17608-17619. https://doi.org/10.3390/s121217608
  27. Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25(2): 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  28. Lee, S. Y., H. Y. Weon, J. J. Kim, and J. H. Han. 2016. Biocontrol of leaf mustard powdery mildew caused by Erysiphe cruciferarm using Bacillus velezensis YP2. Korean J. Pestic. Sci. 20(4): 369-374. https://doi.org/10.7585/kjps.2016.20.4.369
  29. Lim, J.-H. and S.-D. Kim. 2013. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant pathol. J. 29(2): 201. https://doi.org/10.5423/PPJ.SI.02.2013.0021
  30. Liu, Y., N. Zhang, M. Qiu, H. Feng, J. M. Vivanco, Q. Shen, and R. Zhang. 2014. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 353(1): 49-56. https://doi.org/10.1111/1574-6968.12406
  31. Long, H. H., D. G. Sonntag, D. D. Schmidt, and I. T. Baldwin. 2010. The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol. 185(2): 554- 567. https://doi.org/10.1111/j.1469-8137.2009.03079.x
  32. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Status and production of vegetable plants in greenhouse 2016. Horticulture and Industry Division. MAFRA. 99-116.
  33. Mahaffee, W. F. and P. A. Backman. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathol. 83(10): 1120-1125. https://doi.org/10.1094/Phyto-83-1120
  34. Meng, Q., H. Jiang, and J. J. Hao. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Control. 98: 18-26. https://doi.org/10.1016/j.biocontrol.2016.03.010
  35. Namgung, M., B. S. Kim, S. J. Heo, Y. B. Choi, J. H. Hur, and D. H. Park. 2014. Assessment of pre-harvest environmental factors in domestic production of organic lettuce. Korean J. Pestic. Sci. (2): 88-94.
  36. Nejad, P. and P. A. Johnson. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol. Control. 18(3): 208-215. https://doi.org/10.1006/bcon.2000.0837
  37. Palencia, P., F. Martínez, M. Pestana, J. A. Oliveira, and P. J. Correia. 2015. Effect of Bacillus velezensis and Glomus intraradices on fruit quality and growth parameters in strawberry soilless growing system. Hort. J. 84(2): 122-130. https://doi.org/10.2503/hortj.MI-002
  38. Pandin, C., D. Le Coq, A. Canette, S. Aymerich, and R. Briandet. 2017. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb. Biotechnol. 10(4): 719-734. https://doi.org/10.1111/1751-7915.12693
  39. Park, J.-W., S. Jahaggirdar, Y.-E. Cho, K.-S. Park, S.-H. Lee, and K.-S. Park. 2010. Evaluation of Bacillus subtilis native strains for plant growth promotion and induced systemic resistance in tomato and red-pepper. Korean J. Pestic. Sci. 14(4): 407-414.
  40. Ramegowda, V. and M. Senthil-Kumar. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54. https://doi.org/10.1016/j.jplph.2014.11.008
  41. Rascio, N. and N. L. Rocca. 2005. Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Critic. Rev. Plant Sci. 24(3): 209-225. https://doi.org/10.1080/07352680591008583
  42. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161(11): 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  43. Rubin, R. L., K. J. van Groenigen, and B. A. Hungate. 2017. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil. 416: 309-323. https://doi.org/10.1007/s11104-017-3199-8
  44. Ryan, R. P., K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278(1): 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  45. Saeidi, M. and R. Zabihi-e-Mahmoodabad. 2009. Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Res. J. Environ. Sci. 3(3): 345-350. https://doi.org/10.3923/rjes.2009.345.350
  46. Sarbadhikary, S. B. and N. C. Mandal. 2017. Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere. 3: 170-175. https://doi.org/10.1016/j.rhisph.2017.04.014
  47. Singh, J. S., S. Koushal, A. Kumar, S. R. Vimal, and V. K. Gupta. 2016. Book review: microbial inoculants in sustainable agricultural productivity-Vol. II: functional application. Frontiers in Microbiology 7.
  48. Sturz, A. and J. Nowak. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15(2): 183-190. https://doi.org/10.1016/S0929-1393(00)00094-9
  49. Szczech, M. and M. Shoda. 2006. The effect of mode of application of Bacillus subtilis RB14C on its efficacy as a biocontrol agent against Rhizoctonia solani. J. Phytopathol. 154(6): 370-377. https://doi.org/10.1111/j.1439-0434.2006.01107.x
  50. Tahvonen, R., A. Hannukkala, and H. Avikainen. 1995. Effect of seed dressing treatment of Streptomyces griseoviridis on barley and spring wheat in field experiments. Agric. Sci. Finland 4(4): 419-427.
  51. Timmusk, S., I. A. A. El-Daim, L. Copolovici, T. Tanilas, A. Kannaste, L. Behers, E. Nevo, G. Seisenbaeva, E. Stenstrom, and U. Niinemets. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE. 9(5): e96086. https://doi.org/10.1371/journal.pone.0096086
  52. Xu, Z., R. Zhang, D. Wang, M. Qiu, H. Feng, N. Zhang, and Q. Shen. 2014. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl. Environ. Microbiol. 80(9): 2941-2950. https://doi.org/10.1128/AEM.03943-13
  53. Yoo, S.-J. and M. K. Sang. 2017. Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res. Plant Dis. 23(2): 99-113. https://doi.org/10.5423/RPD.2017.23.2.99
  54. Zandalinas, S. I., R. Mittler, D. Balfagon, V. Arbona, and A. Gomez‐Cadenas. 2017. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. doi: 10.1111.ppl.12540 (Epub ahead of print). https://doi.org/10.1111/ppl.12540
  55. Zhang, J., J. Yang, P. An, W. Ren, Z. Pan, Z. Dong, G. Han, Y. Pan, S. Pan, and H. Tian. 2017. Enhancing soil drought induced by climate change and agricultural practices: Observational and experimental evidence from the semiarid area of northern China. Agric. For. Meteorol. 243: 74-83. https://doi.org/10.1016/j.agrformet.2017.05.008
  56. Zhou, H., C. Luo, X. Fang, Y. Xiang, X. Wang, R. Zhang, and Z. Chen. 2016. Loss of gltb inhibits biofilm formation and biocontrol efficiency of Bacillus subtilis Bs916 by altering the production of ${\gamma}$-polyglutamate and three lipopeptides. PLoS ONE. 11(5): e0156247. https://doi.org/10.1371/journal.pone.0156247