• 제목/요약/키워드: Branch structure parameter

검색결과 26건 처리시간 0.019초

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

지상형 라이다와 정량적 구조 모델을 이용한 분기별, 종별 나무의 가지 구조 탐구 (Exploring Branch Structure across Branch Orders and Species Using Terrestrial Laser Scanning and Quantitative Structure Model)

  • 조성우;양태강
    • 한국농림기상학회지
    • /
    • 제26권1호
    • /
    • pp.31-52
    • /
    • 2024
  • 나무의 가지 구조와 생리학 사이의 중요한 관계를 고려할 때 가지 구조를 이해하는 것은 수종의 분류나 3D 나무 모델링과 같은 분야에 중요하다. 지상형 라이다는 나무의 구조를 자세히 포착하고 정량적 구조 모델은 지상형 라이다로부터 얻어진 포인트 클라우드에서 가지의 반경과 길이의 계산을 가능하게 한다. 선행 연구에서는 반경 비율이나 길이 비율 등 가지의 구조를 나타내는 인자의 대푯값으로 평균 또는 중앙값에 의존하거나 줄기와 1분기 가지의 관계만을 다루었다. 본 연구는 가시칠엽수, 은행나무, 왕벚나무에서 부모와 자식 가지 사이의 반경 비율, 길이 비율 및 분지각 세 가지 인자에 대해 3분기 가지까지 인자들의 추정 분포를 살펴보고 추정 분포들을 분기별, 종별로 비교하는 것을 목표로 한다. 인자들에 적합한 분포를 알아보기 위해 인자들을 여러 확률 분포로 추정해 보았고, 평균 Kolmogorov-Smirnov 통계량에 의거해 각각 그 수치가 반경의 경우 0.048, 길이의 경우 0.061, 각도의 경우 0.050으로 감마 분포가 최적의 분포로 선택되었다. 추정된 분포 내에서 최빈값과 평균값, 최빈값과 중앙값 사이의 차이를 정규화 한 평균은 반경에 경우 11.2% 및 7.5%, 길이에 경우 17.0% 및 11.5%, 분지각의 경우 8.2% 및 5.5%로 상당한 차이를 보였다. 추정된 분포 사이에서 분기별, 종별 비교 분석을 수행했으며, 그 결과 인자들로부터 추정된 분포는 분기와 종에 따라 다양한 분포 양상을 보였다. 본 연구는 이러한 인자들의 확률 분포를 조사하는 것이 가지 구조에 대해 더 상세한 묘사를 제공할 수 있음 시사한다. 또한 가지 구조의 포괄적인 이해를 위해 더 높은 분기의 가지를 조사하는 것의 중요성을 강조한다.

Calculation of electric field gradient tensor for simple point charge distributions and its application to real systems

  • Choh, Sung-Ho;Shin, Hee-Won;Park, II-Woo;Ju, Heong-Kyu;Kim, Jong-Hyun;Kim, Hae-Jin
    • 한국자기공명학회논문지
    • /
    • 제7권1호
    • /
    • pp.16-24
    • /
    • 2003
  • Nuclei with the spin quantum number not smaller than unity have not only the nuclear magnetic moment but also the electric quadrupole moment. The quadrupole moment couples with the electric field gradient (EFG) to produce the nuclear quadrupole interaction. It is well known that two independent parameters, i.e. the quadrupole coupling constant (QCC) and the asymmetry parameter ($\eta$) together with the principal axis directions can fully describe the interaction and are very sensitive to the local symmetry and structure of the solid. In order to obtain quantitative estimates of the EFG tensor for various simple ionic configurations surrounding the nucleus under consideration, we employ the simple point charge approximation and apply the calculated results to some real crystals. General agreement is rather satisfactory.

  • PDF

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Application of computer algorithms for modelling and numerical solution of dynamic bending

  • Jianzhong, Qiu;Naichang, Dai;Akbar Shafiei, Alavijeh
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.143-152
    • /
    • 2023
  • In this paper, static and dynamic bending of nanocomposite micro beam armed with CNTs considering agglomeration effect is studied. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The micro beam is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the static and dynamic deflections are decreased. In addition, enhancing the nonlocal parameter yields to higher static and dynamic deflections.

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects

  • Karegar, Mohammad;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.129-137
    • /
    • 2022
  • Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Kinetic Monte Carlo 시뮬레이션을 이용한 흡착 원자의 확산 계수 결정 (A method for determination of diffusion parameters of adatoms using kinetic monte calo simulation)

    • 한국진공학회지
    • /
    • 제9권4호
    • /
    • pp.419-427
    • /
    • 2000
  • 본 연구는 원자의 주변 환경에 따른 각각의 확산 속도를 구할 수 있는 기구를 제시하였다. STM 또는 HRLEED 등의 실험과 kinetic Monte Carlo(KMC) 시뮬레이션 계산과의 비교를 통하여 테라스 위 흡착 원자의 확산장벽, step 끝 부착 원자의 탈착 확산 장벽, 잘 알려진 Schwoebel 장벽을 포함한 각각의 확산 장벽을 구할 수 있었다. 팔-넓이, 군집 밀도, 거칠기 등이 시뮬레이션 계산과 실험 결과를 비교하는 데에 가장 적절한 원자단위의 구조변수들임을 확인하였고, 특히 아직 잘 사용되지 않은 구조 계수인 가지폭이 확산 장벽을 구별하여 구하는 데에 중요한 역할을 하는 것을 확인하였다.

  • PDF

개방 스터브를 갖는 평행 결합 선로의 해석과 브랜치 라인 하이브리드에의 응용 (The Analysis of the Parallel Coupled Line with an Open Stub and Its Branch-Line Hybrid Application)

  • 이원균;황희용
    • 한국전자파학회논문지
    • /
    • 제19권1호
    • /
    • pp.40-45
    • /
    • 2008
  • 본 논문에서는 개방 스터브를 갖는 평행 결합 선로의 해석과 이를 이용하여 고조파 저지 특성을 갖는 소형화된 새로운 브랜치 라인 하이브리드를 제안한다. 먼저, 개방 스터브를 포함한 평행 결합 선로 전체의 Z-파라미터를 유도하였으며, 이는 넓은 저지 대역을 갖는 단위 저역 통과 여파기(LUC)의 특성을 갖는다. 이를 브랜치 라인 하이브리드의 설계에 적용하여, 중심 주파수 1.8 GHz 근처에서는 기존 브랜치 라인 하이브리드와 동일한 특성을 가지지만 크기는 약 1/2로 줄이고, 5체배 고조파를 포함한 12 GHz까지 스퓨리어스 성분을 -20dB 이하로 저지하는 새로운 브랜치 라인 하이브리드를 설계하였다.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.