Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.1.129

Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects  

Karegar, Mohammad (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
Bidgoli, Mahmood Rabani (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
Mazaheri, Hamid (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.43, no.1, 2022 , pp. 129-137 More about this Journal
Abstract
Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.
Keywords
DQM; dynamic response; laminated concrete porous beam; nanoparticles; newmark method;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Fouaidi, M., Jamal, M., Zaite, A. and Belouaggadia, N. (2021), "Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method", Aerosp. Sci. Technol., 110, 106479. https://doi.org/10.1016/j.ast.2020.106479.   DOI
2 Penna, R., Feo, L. and Lovisi, G. (2021), "Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity", Compos. Struct. 263, 113627. https://doi.org/10.1016/j.compstruct.2021.113627.   DOI
3 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b) "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.   DOI
4 Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820.   DOI
5 Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concr., 17, 567-578.   DOI
6 Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.   DOI
7 Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete Pipes Reinforced with AL2O3 Nanoparticles Considering Agglomeration: Magneto-Thermo-Mechanical Stress Analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.   DOI
8 Karegar, M., Rabani Bidgoli, M. and Mazaheri, H. (2021), "Smart control and seismic analysis of concrete frames with piezoelectric layer based on mathematical modelling and numerical method", Structures. 32, 1171-1179.   DOI
9 Kargar, M. and Rabani Bidgoli, M. (2018), "Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis", Steel Compos. Struct., 27(4), 465-477. https://doi.org/10.12989/scs.2018.27.4.465.   DOI
10 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a) "Theoretical investigation on static analysis of pultruded GFRP composite beams", J. Eng. Sci., 8(3), 483-490. https://doi.org/10.21541/apjes.734770.   DOI
11 Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.   DOI
12 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids. 82, 104010.   DOI
13 Fouaidi, M., Jamal, M. and Belouaggadia, N. (2020), "Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure", Compos. Struct., 252, 112593. https://doi.org/10.1016/j.compstruct.2020.112593.   DOI
14 Madenci, E. and Ozkilic, Y.O. (2021) "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.   DOI
15 Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.   DOI
16 Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021b) "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.   DOI
17 Sahoo, S.K., Mohapatra, B.G., Patro, S.K. and Acharya, P.K. (2021), "Evaluation of graded layer in ground granulated blast furnace slag based layered concrete", Constr. Build. Mater., 276, 122218. https://doi.org/10.1016/j.conbuildmat.2020.122218.   DOI
18 Sridhar, R. and Prasad, D.R. (2019), "Damage assessment of functionally graded reinforced concrete beams using hybrid fiber engineered cementitious composites", Structures. 20, 832-847. https://doi.org/10.1016/j.istruc.2019.07.002.   DOI
19 Zamani, A. and Rabani Bidgoli, M. (2017), "Vibration analysis of concrete foundations retrofit with NFRP layer resting on soil medium using sinusoidal shear deformation theory", Soil Dyn. Earthq. Eng., 103, 141-150. https://doi.org/10.1016/j.soildyn.2017.09.018.   DOI
20 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin-Wall. Struct., 163, 107706.https://doi.org/10.1016/j.tws.2021.107706.   DOI
21 Bai, Z., Liu, Y., Yang, J. and He, S. (2019), "Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete", Constr. Build. Mater., 227, 116574. https://doi.org/10.1016/j.conbuildmat.2019.07.300.   DOI
22 Craveiro, F., Nazarian, S., Bartolo, H., Bartolo, H., Bartolo, P.J. and Duarte, J.P. (2020), "An automated system for 3D printing functionally graded concrete-based materials", Addit. Manuf., 33, 101146. https://doi.org/10.1016/j.addma.2020.101146.   DOI
23 Harith, I.K. (2018), "Study on polyurethane foamed concrete for use in structural applications", Case Stud. Constr. Mater., 8, 79-86. https://doi.org/10.1016/j.cscm.2017.11.005.   DOI
24 Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.   DOI
25 Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan M.H. (2020b), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.   DOI
26 Zhang, W., Qin, Q., Li, K., Li, J. and Wang, Q. (2021), "Effect of stepwise gradient on dynamic failure of composite sandwich beams with metal foam core subject to low-velocity impact", Int. J. Solids. Struct., 228, 111125. https://doi.org/10.1016/j.ijsolstr.2021.111125.   DOI
27 Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.   DOI
28 Shagholani Loor, A., Rabani Bidgoli, M. and Mazaheri, H. (2020), "On the use of differential quadrature-three-term conjugate finite-step length methods for reliability analysis of steel fiber-reinforced sinusoidal rupture beams", Eng. Comput., https://doi.org/10.1007/s00366-020-01201-w.   DOI
29 Viet, N.V. and Zaki, W. (2021), "Bending model for functionally graded porous shape memory alloy/poroelastic composite cantilever beams", Appl. Math. Model., 97, 398-417. https://doi.org/10.1016/j.apm.2021.03.058.   DOI
30 Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.   DOI
31 Chan, R., Liu, X. and Galobardes, I. (2020), "Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates", Constr. Build. Mater., 242, 118186. https://doi.org/10.1016/j.conbuildmat.2020.118186.   DOI
32 Ozkilic, Y.O., Aksoylu, C. and Arslan M.H. (2021a) "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326. https://doi.org/10.12989/sem.2021.79.3.309.   DOI
33 Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civ. Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008.   DOI
34 Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite grapheme platelets applying an efficient shear flexible finite element approach", Int. J. Non-Linear. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.   DOI
35 Azree, M. and Wang, Y.C. (2012), "Mechanical properties of foamed concrete exposed to high temperatures", Constr. Build. Mater., 26(1), 638-654. https://doi.org/10.1016/j.conbuildmat.2011.06.067.   DOI
36 Bakhshande, Amnieh. H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.   DOI
37 Mahjoobi, M. and Rabani Bidgoli, M. (2019), "Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods", Struct. Eng. Mech., 69(5), 547-555. http://dx.doi.org/10.12989/sem.2019.69.5.547.   DOI
38 Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi. 32(3), 10823-10858. https://doi.org/10.18400/tekderg.667066. (In Turkish).   DOI
39 Alijani, M. and Rabani Bidgoli, M. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concr. Constr., 6(6), 585-610. http://dx.doi.org/10.12989/acc.2018.6.6.585.   DOI
40 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020c) "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.   DOI
41 Metsebo, J., Nana Nbendjo, B.R. and Woafo, P. (2016), "Dynamic responses of a hinged-hinged Timoshenko beam with or without a damage subject to blast loading", Mech. Res. Commun., 71, 38-43.   DOI
42 Sang, G., Zhu, Y., Yang, G. and Zhang, H. (2015), "Preparation and characterization of high porosity cement-based foam material", Constr. Build. Mater., 91, 133-137. https://doi.org/10.1016/j.conbuildmat.2015.05.032.   DOI
43 Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan M.H. and Gemi, L. (2021c), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.   DOI
44 Pietras, D. and Sadowski, T. (2019), "A numerical model for description of mechanical behaviour of a Functionally Graded Autoclaved Aerated Concrete created on the basis of experimental results for homogenous Autoclaved Aerated Concretes with different porosities", Constr. Build. Mater., 204, 839-848. https://doi.org/10.1016/j.conbuildmat.2019.01.189.   DOI
45 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
46 Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.   DOI
47 Aksoylu, C., Ozkilic, Y.O. and Arslan M.H. (2020a), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.   DOI