• Title/Summary/Keyword: Branch crack

Search Result 83, Processing Time 0.024 seconds

Assessment of Internal Leak on RCS Pressure Boundary Valves (원자로냉각재계통 압력경계밸브 내부누설 평가)

  • Park, Jun-Hyun;Moonn, Ho-Rim;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.322-327
    • /
    • 2001
  • The internal leaks of RCS pressure boundary valves may cause thermal fatigue crack because of the TASCS in RCS branch line. After experienced unisolable piping failures in several PWR plants, many studies have peformed to understand these phenomena and various methods were applied to ensure the structural integrity of piping. In this paper, the cause of unisolable piping failures and the alternatives to prevent recurrence of failure were reviewed. Also, the severity of piping failure including susceptibility of valve leaks was evaluated for the Westinghouse 2-loop plant. The length of turbulent penetration on RHR inlet piping was measured and, thermal fluid analysis and fatigue analysis was performed for this piping. As a means of ensuring the structural integrity, temperature monitoring and specialized UT and other alternatives were compared for the further application.

  • PDF

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Hydrogneation and Electrochemical Characteristics of Gas-atomized Zr-based $AB_2$ Hydride for Ni-MH Secondary Battery (기체분무형 공정으로 제조된 Zr계 금속수소화물의 수소화반응 및 Ni-MH 2차전지 전극 특성에 관한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek;Kim, Byung-Kwan;Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.505-511
    • /
    • 2009
  • The hydriding and electrochemical characteristics of Zr-based $AB_2$ alloy produced by gas atomization have been extensively examined. For the particle morphology of the as-cast and gas-atomized powders, it can be seen that the mechanically crushed powders are irregular, while the atomized powder particles are spherical. The increase of jet pressure of gas atomization process results in the decrease of hydrogen storage capacity and the slope of plateau pressure significantly increases. TEM and EDS studies showed the increase of jet pressure in the atomization process accelerated the phase separation within grain of the gas-atomized alloy, which brought about a poor hydrogenation property. However, the gas-atomized $AB_2$ alloy powders produced by jet pressure of 50 bar kept up the reversible $H_2$ storage capacity and discharge capacity similar to the mechanically crushed particles. In addition, the electrode of gas-atomized Zr-based $AB_2$ alloy of 50 bar showed improved cyclic stability over that of the cast and crushed particulate, which is attributed to the restriction of crack propagation by grain boundary and dislocation with ch/discharging cycling.

Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone

  • Li, Tingchun;Du, Yiteng;Zhu, Qingwen;Ren, Yande;Zhang, Hao;Ran, Jinlin
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.573-588
    • /
    • 2021
  • The interaction of cracks and water significantly affects the fracture mechanism of rocks. In this study, laboratory tests were conducted using sandstone samples containing a single fissure to explore the hydro-mechanical behaviors in the failure process of pre-cracked rocks. The internal crack characteristics were also analyzed using X-ray CT scanning. The results show that the confining pressure has the greatest effect on the mechanical properties (e.g., strengths, elastic modulus, and Poisson's ratio), followed by the fissure inclination and water pressure. At a lower fissure inclination, the confining pressure may control the type main cracks that form, and an increase in the water pressure increases the number of anti-wing cracks and the length of wing cracks and branch cracks. However, the fracture behaviors of samples with a higher fissure inclination are only slightly affected by the confining pressures and water pressures. The effect of fissure inclination on the internal crack area is reduced with the propagation from the fissure tips to the sample ends. The fissure inclination mainly affects the value of permeability but not affect the trend. The impact of pre-existing fissure on permeability is smaller than that of confining pressure and water pressure.

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab;Haeri, Hadi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.537-547
    • /
    • 2018
  • This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • In this research, the effect of bedding layer on the tensile failure mechanism of rocks has been investigated using PFC2D. For this purpose, firstly calibration of PFC2d was performed using Brazilian tensile strength. Secondly Brazilian test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally, 21 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than 15, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be noted that number of cracks decrease with increasing the layer thickness. Also, Brazilian tensile strength is minimum when bedding layer angle is between $45^{\circ}$ and $75^{\circ}$. The maximum one is related to layer angle of $90^{\circ}$.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Remaining Life Assessment of High Temperature Steam Piping (고온 증기 파이프의 잔여수명 평가)

  • 윤기봉
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.12-24
    • /
    • 1995
  • Recently, more researches have been actively performed for the assessment of material degradation and residual-life of elevated temperature plant components, as some of domestic fossil power plants become older than 30 years. In this paper, results of on_site residual life assessment are reported for main steam pipes of Youngwol power station #2 which have operated since 1965. For critical weld locations such as butt welds branch welds, Y_sections and a T-section, replication technique and hardness measurement technique were employed for life_assessment. When cracks were detected by conventional NDT tests, crack growth life was calculated using a computer code. On the other hand, for matrix of pipes, residual life was quantitatively estimated by an analytic method and material degradation was estimated qualitatively using diameter measurement data and grain-boundary etching method. Also, direction in further improvement of on-site life assessment techniques are proposed.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.