• 제목/요약/키워드: Braking torque

검색결과 112건 처리시간 0.026초

42-volt ISG 차량의 성능 시뮬레이터를 이용한 연비성능 분석 (Analysis of Fuel Economy for a 42-volt ISG Vehicle Using Performance Simulator)

  • 김정민;오경철;이재호;김현수
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper, an operation algorithm and a performance simulator are developed for a 42-volt ISG vehiclewhich consists of 5 kW ISG, 2500cc IC engine, torque converter and 4 speed automatic transmission. Modularapproach using MATLAB Simulink is used to construct a dynamic model of the vehicle powertrain which is obtainedfrom each component such as engine, battery, ISG, torque converter, etc.. An operation strategy for a 42-volt ISG vehicle including the function such as engine idle stop and regenerative braking is proposed. Performance simulator is developed based on the dynamic models of the powertrain. It is found from the simulation results that fuel economy can be improved as much as 6 percent for FTP75 driving cycle mostly owing to the engine idle stop.

대형 굴삭기용 주차 브레이크의 마찰 특성 분석 (Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator)

  • 이용범;김광민
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.

한국형고속열차의 동력전달축 부하측정 (Torque Measurement of Tripod Shaft for HSR-350x)

  • 김상수;김영국;김기환;박춘수
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.660-664
    • /
    • 2007
  • 고속철도차량은 견인력 및 제동력을 전달하기 위하여 한 편성당 12개의 전동기를 동력차 및 동력객차에 설치하고 있다. 각각의 전동기는 회전력을 트리포드 축을 통하여 윤축에 전달한다. 본 연구에서는 한국형고속열차 트리포드 축에 회전력을 직접 측정할 수 있는 시스템을 구축하여 본선 주행시 토크를 측정하고, 그 결과를 검토하고자 한다.

Decanter형 원심분리기의 동력 계산 (II) - 총동력과 동력전달 기구 - (Analysis of the Power for a Decanter-Type Centrifuge (II) - Total Power and the Power-Transmission Mechanism -)

  • 서용권;한근조
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.938-947
    • /
    • 2003
  • In this paper, we derived the formula for estimating the power of the electric motors needed to operate the Decanter-type centrifuge. In the derivation of the formula the sludge-removal torque is to be supplied from the formula derived in the first paper. The intricate nature of the transmission mechanism in the planetary gear trains of the sludge-removal power and torque has been clarified in this second paper. In particular we considered two-motor system, where the main motor drives the machine while the differential-speed control motor plays the role of braking in adjusting the differential speed. Sample calculation for the specific design treated in the first paper showed that the selection criterion for the main motor depends on the lower limit of the differential speed; when the lower limit is set low, it should be selected based on the steadily operating power, while it should be selected based on the starting power when the lower limit is set high. The total power required by both the main motor and the differential-speed control motor increases as the differential speed is decreased. It is suggested that the power loss in the differential-speed control motor could be minimized by attaching an electric generator to it.

공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현 (An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object)

  • 이건영;김진오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

Matlab과 PSPICE를 이용한 동기전동기의 전기 제동 확대 시뮬레이션에 관한 연구 (A study on electronic braking expansion simulation of synchronous motor applied by Matlab & PSPICE)

  • 나승권;구기준
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.87-94
    • /
    • 2012
  • 기계적 제동방식이 사용되는 전동차는 공기제동과 전기제동을 혼합한 방식으로 최근 녹색성장을 지향하면서 효율개선 및 환경문제 해결을 위한 많은 방법들이 제시되고 있다. 기계적인 제동은 분진, 소음 등의 환경문제와 함께 브레이크 슈와 라이닝 등의 소모품을 교체해야하는 경제적 문제를 가지고 있다. 이러한 단점을 보완하기 위하여 고속 영역에서 정지에 이르는 광범위한 영역에 이르기까지의 전기제동을 필요로 하게 되었다. 본 연구는 구배에 의한 부하토오크를 추정하여 전동차를정지시키는방법에대해연구되어졌으며낙차에따른 토오크를 추정하여 제동하는 방법의 특성을 확인하였다.

전동지게차용 변속 구동부 및 시험기 설계 (Design of Speed-Variable Driving System and Tester for Electric Forklift Truck)

  • 심재현;강현국;함성훈;오세훈
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.38-43
    • /
    • 2008
  • The usage of electric forklift truck is gradually increasing due to the convenience at conveying and arranging the materials in the industrial field. In this study, the author designed and suggested the optimum driving system and load tester which both of them are the most important part of the forklift truck. The planetary gear is chose to driving system because it makes big power even though the motor size is small. The gear teeth of planetary gear were designed and the designed planetary gear was tested considering the yield strength and the abrasion of gear teeth. The B-Type electric brake which consists of multiple plates and operates with non-magnetic type was connected with a single shaft in the driving system. So, it can be applied at the sudden braking situation which has the torque increment. And it has the compact size and excellent durability Load tester can give the various levels of load to the planetary gear of driving system in the electric forklift truck and it can also measure the levels of the load which were applied. Therefore, we can measure the noise, torque and perform the durability, vibration tests using load tester. It will be economical because many kinds of test can be performed using reasonable priced load tester The driving system of electric forklift truck which has sufficient competitive can be manufactured using our designed planetary gear reducer with reasonable price. The designed load tester can use for checking the performance of other reducers, as well.

  • PDF

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

ER 밸브를 이용한 자동차 브레이크 시스템의 차륜 슬립제어 (Wheel slip control of automotive brake system using ER valve)

  • 방주현;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.357-360
    • /
    • 1997
  • This paper presents a new anti-lock brake system(ABS) using electro-rheological(ER) valve actuators for the wheel slip control. The hydraulic dynamic model of the automotive brake system is formulated by incorporating electric field-dependent Bingham properties of ER fluid obtained experimentally. The brake system designed by this hydraulic model is able to control wheel slip by controlling the intensity of electric field which tunes the braking torque. The control fields of the ER valve to command desired wheel slip are determined by a sliding mode controller. A comparison between the proposed brake system and the conventional brake system is made by providing with computer simulations of vehicle motions under ABS performance requirement condition.

  • PDF

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF