• Title/Summary/Keyword: Braking time

Search Result 253, Processing Time 0.032 seconds

Modeling and Parameter estimation of Antilock Braking System (최소자승법에 의한 ABS(Antilock Braking System)의 모델링 및 파라미터 평가)

  • Song, Chang-Sub;Rho, Hyoung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.87-92
    • /
    • 2002
  • By using the signal error test, model structure of total antilock braking system consisting of electromagnetic system and hydraulic system is determined as 9th order system. For determining parameters of the ABS, using time discrete model of parametric method, parameters in time discrete model are searched by least square method. By bilinear transform, we have found the model of ABS in s domain. Afterward, experimental output data is compared with simulated output data by MATLAB haying identified parameter. As the result, experimental data is agreed with simulated data very well.

A Study on the prediction of braking time for rotor brake system considering the friction coefficient variation with temperature (마찰계수의 변화를 고려한 로터 브레이크 시스템의 제동시간 예측)

  • Choi, Jang-Hun;Oh, Min-Hwan;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.653-660
    • /
    • 2009
  • A helicopter rotor brake system stops or reduces the speed of the rotor by transforming the kinetic energy into the heat energy. The frictionally generated heat has a considerable effect on the frictional property of material itself and causes the change of the friction coefficient which may affect the breaking time significantly. In this paper, to take into account the effect of change of friction coefficient according to temperature on braking time, thermo-mechanically coupled analysis is carried out by commercial software ABAQUS. Further, simple theoretical equation is derived considering thermo-mechanical behaviors. The predicted braking times both from theoretical and numerical methods are compared and validity of proposed theoretical equation is investigated.

Study on the Braking Characteristics of Starting System Used for Initial Spin-up of Gas Turbine (가스터빈 초기 구동용 시동시스템의 제동특성 연구)

  • Song, Ju-Young;Park, Jun-Cheol;Lee, Ki-Hoon;Kim, Sung-Hyun;Nam, Sam-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.379-382
    • /
    • 2011
  • Engine test as well as unload test of starting motor itself was performed to evaluate the braking characteristics of starting system used for initial spin-up of gas turbine for power generation. Through the experimental evaluation of the braking performance with the capacity of braking resistor of the starting motor, we have achieved quantitative data to secure robust braking characteristics in emergency during the starting period of the gas turbine. It is possible to establish a capacity selection criterion of braking resistor to ensure the starting reliability of the gas turbine.

  • PDF

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns (제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구)

  • Lee, Kye-Sub;Son, Sung-Soo;Yang, Ki-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.

A Numerical Study of Thermal Performance in Ventilated Disk Brake (통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

Discussion of the relationship between tractive power and braking power in initial time (초기기동시 추진력과 제동력 관계에 대한 고찰)

  • Lee, Gi-Sik;Han, Sung-Ho;Jung, Kwon-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1643-1648
    • /
    • 2009
  • The braking system of train must posses the large baking effort in order to stop the train safety within the limited traveling distance. but, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid. because the applied braking force exceeds the allowable adhesive force. this skid causes not only to increase the a stopping distance but also to deteriorate the safety of train and damage the rall surface by wheel flat. In the present paper, braking force for disk brake of Tilting Train eXpress(TTX) was measured though on convention line test and the traction force was estimated by using the analytic model in skid condition. also, we have discussed the relationship between the bake force and traction force in starting condition.

  • PDF

Anti-lock Braking System for Commercial Vehicles with Pneumatic Brake System by Using Slip Ratio (슬립률을 이용한 상용차용 공압식 브레이크 기반 ABS 알고리즘 개발)

  • Kim, Jayu;Kwon, Baeksoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.21-26
    • /
    • 2020
  • This paper presents an anti-lock braking system for commercial vehicles with pneumatic brake system by using slip ratio. By virtue of system reliability, most commercial vehicles adopt pneumatic brake system. However, pneumatic brake systems control is more difficult than hydraulic systems due to a longer time delay and the system nonlinearity. One of the major factors in generating braking forces is the wheel slip ratio. Accordingly, the proposed ABS strategy employs the slip ratio threshold-based valve on/off control. This threshold-based algorithm is simple but effective to control the pneumatic brake systems. The control performance of the proposed algorithm has been validated via simulation studies using MATLAB/Simulink and Trucksim. The results show ABS by using slip ratio reduces the braking distance and improves vehicle control.

Durability Evaluation on the Air-Braking Release Failure Proof Valve of Cargo Train (화물열차 공기제동 완해불량 방지 밸브의 내구성 평가)

  • Lee, Jun-Ku;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.32-38
    • /
    • 2020
  • Cargo train braking uses the pressure changes in the air braking pipe to operate the braking tightening and releasing service repeatedly. Air-braking release failure means partial braking caused by a failure of the variable load valve after the driver handling the brake release. This phenomenon causes wheel flaws while driving a wagon, resulting in wheel breakage or train derailment. This study developed the air-braking release failure proof valve considering the technical requirements of the railway operation corporations. In addition, a durability test of the valve was carried out using a braking performance simulator, and its operating performance was evaluated from the pneumatic history under cyclic braking conditions. The warranty life of this valve was assessed by performing 160,000 cycles of testing of 12 prototypes in accordance with the zero-failure test method, considering the number of braking cycles while driving the wagon. During the durability test, the pneumatic input time, output time, and release velocity were almost constant. The warranty life of this valve was 59,860 times the 95% confidence level, which means that it can be operated without trouble for four years when the valve is installed in the bogie of the wagon.

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.