• Title/Summary/Keyword: Braking effects

Search Result 89, Processing Time 0.019 seconds

A Study of Thermal Behaviors on the Effect of Aspect Ratio of Ventilation Hole in Disk Brake (디스크 브레이크의 방열구 형상비에 따른 열적 거동에 관한 연구)

  • 김진택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.384-388
    • /
    • 2002
  • The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of aspect ratio of ventilated hole on the heat dissipation was investigated.

A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles (자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구)

  • Baek, Il-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.

Dynamic Behavior Modeling of a Train Vehicle for The Prediction of Braking Characteristics (제동특성 예측을 위한 철도차량의 동적거동 모델링)

  • Park, Joon-Hyuk;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1631-1638
    • /
    • 2007
  • In this paper, a modeling for the dynamic behavior of a train vehicle is suggested for the prediction of the braking characteristics. In the dynamic modeling, effects of the primary and secondary suspension elements are considered and interactions between two vehicles are also estimated. This study can offer some fundamental results for a further research to enhance the braking performance using active braking control.

  • PDF

BLAC Drive System for Electro-Magnetic Brake (Electro-Magnetic Brake를 위한 BLAC 구동시스템)

  • Jeon, Mi-Rim;Lee, Jae-Hyun;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • The electric braking system obtains its braking force by a motor instead of the hydraulic brake which has been used in conventional automobile systems. Electric braking system is consisted of fewer numbers of components than hydraulic braking system, and it has effects of improved response and reduced braking distance for the ABS(Anti-lock Brake System) and ESC(Electronic Stability Control). This paper presents the BLAC motor drive system for Electro-Magnetic Brake(EMB). Proposed control system consists of the power converter for driving a motor and the digital control system for speed control, and the vector control is applied for fast torque response. It is verified through the simulation using Matlab/Simulink and experiment that the proposed BLAC drive system can be applied to EMB.

A Numerical Study of Thermal Performance in Ventilated Disk Brake (통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

Development of train/bridge interaction Analysis program Consideration braking (열차 제동하중을 고려한 차량/교량 상호 작용 해석기법 개발)

  • Yun hee sub;Kim Man-Cheol;Han sang chel
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1177-1183
    • /
    • 2005
  • This paper presents the effects of dynamic response of the railway bridge through the suspension system when the train is moving with uniform speed and non-uniform speed Railway bridges are subjected to dynamic loads generated by the interaction between moving vehicles and the bridge structures. these dynamic loads result in response fluctuation in bridge members. To investigate the real dynamic behavior of the bridge, a number of analytical and experimental investigation should be carried out. This paper, a train/bridge interaction analysis program considerate braking action. New scheme consideration of braking action on the bridge using speed-dependent braking function is presented. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi three-dimensional analysis.

  • PDF

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

A Study of Thermal Behavior in Ventilated Disk Brake

  • Kim, Jin-Taek
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.56-60
    • /
    • 2006
  • By the increasing amount of vehicles, the increase of car accident served as a major momentum for remind the importance of braking system. The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads.

Biomechanical Research of Soccer Footwear (축구화의 운동역학적 특성연구)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2005
  • The Purpose of this study was to reveal the biomechanical difference of two soccer footwear(soft ground footwear and hard ground footwear). Secondly, the purpose of this study was to clarify how each type of soccer footwear effects soccer players, which will provide scientific data to coaches and players, to further prevent injuries and to improve each players capacity. The result of comparative analysis of two soccer footwear can be summarized as below. The comparison of the very first braking force at walking found distinctive factors in the statistical data(t=3.092, p<.05). Braking impulse of two difference footwear showed distinctive factors in the statistical data(t=2.542, p<.05). In comparing GRFz max(N), the result showed a statistically significant difference in the two soccer footwear at running(t=2.784, p<.05). In the maximum braking impulse(t=2.774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. Significant differences were not found in moment(rotational friction) with two difference soccer footwear(moment max; t=2.231, moment min; t=1.784).