• 제목/요약/키워드: Brain-stem tumor

검색결과 52건 처리시간 0.026초

Fractionated Stereotactic Radiotherapy in Pediatric Diffuse Intrinsic Brain Stem Gliomas

  • Choi, Woo-Jin;Yee, Gi-Taek;Han, Seong-Rok;Yoon, Sang-Won;Lee, Dong-Joon;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권3호
    • /
    • pp.154-158
    • /
    • 2006
  • Objective : We treated 10 pediatric diffuse intrinsic brain stem glioma[BSG] patients with Novalis system [linac based radiotherapy unit, Germany] and examined the efficacy of the Fractionated Stereotactic Radiotherapy[FSRT]. Methods : A retrospective review was conducted on 10 pediatric diffuse intrinsic BSG patients who were treated with FSRT between May, 2001 and August, 2004. The mean age of the patient group was 7.7 years old. Male to female ratio was 4 to 1. The mean dose of FSRT was 38.7Gy, mean fractionated dose was 2.6Gy, mean fractionation size was 16.6, and target volume was $42.78cm^3$. The mean follow up period was 14 months. Results : Four weeks after completion of FSRT, improvements on neurological status and Karnofsky performance scale[KPS] score were recorded in 9/10 (90%] patients and magnetic resonance imaging[MRI] showed decrease in target tumor volume in 8 pediatric patients. The median survival period was 13.5 months after FSRT and treatment toxicity was mild. Conclusion : It is difficult for surgeons to choose surgical treatment for diffuse intrinsic BSG due to its dangerous anatomical structures. FSRT made it possible to control the tumor volume to improve neurological symptoms with minimal complications. We expect that FSRT is a feasible treatment modality for pediatric diffuse intrinsic BSG with tolerable toxicities.

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • 제36권1호
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.

다형성 교모세포종의 항생제 내성 종양 줄기세포 (Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma)

  • 강미경;강수경
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1039-1045
    • /
    • 2007
  • 다형성 교모세포종은 뇌종양 가운데 가장 빈번하게 발병하는 악성종양이다. 다형성 교모세포종에 종양 줄기세포가 존재한다는 보고가 있음에도 불구하고, 항암제 내성과 종양 줄기세포 사이의 상호 연관성에 관한 연구는 아직 미비한 실정이다. 본 연구에서 다형성 교모세포종 세포주 A172 및 뇌종양 환자로부터 확립한 GBM2에 1,3-bis(2 -chloroethyl)-1-nitrosourea (BiCNU)를 처리시 극소량의 세포군만이 생존하며, 이들 생존 세포군은 BiCNU 재처리에 내성을 나타내는 것으로 조사되었다. 또한 이 다형성 교모세포종 유래 BiCNU-내성세포군의 Erk 및 Akt 인산화 활성이 증가되었으며, CD133 줄기세포 표지인자를 발현하는 세포가 다량 존재하였다. 이와 아울러, 다형성 교모세포종 유래 BiCNU-내성세포를 severe combined immuno-deficient (SCID) mouse brain에 이식하였을 때 암이 형성되는 것을 관찰할 수 있었다. 이와 같은 결과는 다형성 교모세포종 유래 BiCNU-내성세포가 종양줄기세포의 능력을 가지는 것으로 생각된다. 따라서 이상의 결과는 다형성 교모세포종에 존재하는 종양줄기세포가 항암제 내성에 관여 한다는 중요한 단서를 제공해줄 수 있을 것으로 사료된다.

Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway

  • Zhenyu Guo;Tingqin Huang;Yingfei Liu;Chongxiao Liu
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.315-325
    • /
    • 2023
  • Background and Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results: Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions: Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.

Emerging role of anti-proliferative protein BTG1 and BTG2

  • Kim, Sang Hyeon;Jung, In Ryeong;Hwang, Soo Seok
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.380-388
    • /
    • 2022
  • The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naive and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics.

Staging in Vestibular Schwannoma Surgery : A Modified Technique

  • Kim, Eal-Maan;Nam, Sung-Il
    • Journal of Korean Neurosurgical Society
    • /
    • 제43권1호
    • /
    • pp.57-60
    • /
    • 2008
  • The authors herein propose the staged excision as a novel strategy to preserve facial nerve and minimize complication during microsurgery of large vestibular schwannoma (VS). At the first stage, for reducing mass effect on the brain stem and cerebellum, subtotal tumor resection was performed via a retrosigmoid craniotomy without intervention of meatal portion of tumor. With total resection of the remaining tumor, the facial nerve was decompressed and delineated during the second stage translabyrinthine approach at a later date. A 38-year-old female who underwent the staging operation for resection of her huge VS is illustrated.

뇌간 종양의 방사선 치료 성적 (Radiotherapy Result of Brain Stem Tumors)

  • 김일한;양미경;박찬일
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.189-196
    • /
    • 1989
  • 1979년부터 1987년까지 뇌간 종양 환자 25명이 방사선 치료를 받았다. 6예는 조직학적으로, 19예는 이학적 및 신경학적 진찰, CT 및 MRI등에 의하여 임상적으로 진단하였다. 18예는 근치적 목적의 방사선 치료를, 6예는 수술후 방사선 치료를, 1예는 방사선 치료 후 항암제 병용요법 등을 각각 받았다. 방사선 치료는 통상적 분할치료법에 의하여 $50\~55Gy$를 조사하였다. 치료 완료후 두달째 임상적 scoring scale에 따른 완전관해는 없었고, 부분관해 16예 $(64\%)$, 무변화 2예, 종양진행 4예가 각각 관찰되었다. 생명표법에 의한 1, 2, 3년 생존율은 각각 $50\%,\;40\%,\;30\%$였으며, 연령, 진단당시 전신상태, 뇌신경 장애정도, 조영제 투입후 시행한 뇌단층 촬영 소견, scoring scale에 의한 임상적 관해양상 등의 요인이 생존율에 유의한 영 향을 주는 예후인자였다.

  • PDF

소뇌-교각종양 수술시 수술 중 전기생리학적 신경감시에 따른 수술 후 기능적 결과 (Intraoperative Neurophysiologic Monitoring and Functional Outcome in Cerebellopontine Angle Tumor Surgery)

  • 이상구;박관;박익성;서대원;엄동옥;남도현;이정일;김종수;홍승철;신형진;어환;김종현
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권6호
    • /
    • pp.778-785
    • /
    • 2000
  • Objectives : Intraoperative neurophysiologic monitoring(INM) is a well known useful method to reduce intraoperative neurological complications during neurosurgical procedures. Furthermore, INM is required in most cerebellopontine angle(CPA) surgery because cranial nerves or brain stem injuries can result in serious complications. Object of this study is to the correlation between the changes of intraoperative monitoring modalities during cerebellopontine angle tumor surgery and post-operative functional outcomes in auditory and facial functions. Material and Methods : Fifty-seven patients who underwent intraoperative neurophysiologic monitoring during CPA tumor surgery were retrospectively reviewed. Their lesions were as follows ; vestibular schwannomas in 42, other cranial nerve schwannomas in seven, meningiomas in five and cysts in three cases. Pre- and postoperative audiologic examinations and facial nerve function tests were performed in all patients. Intraoperative neurophysiologic monitoring modalities includes brainstem auditory evoked potentials(BAEP) and facial electromyographies(EMG). We compared the events of INM during CPA tumor surgeries with the outcomes of auditory and facial nerve functions. Results : The subjects who had abnormal changes during CPA tumor surgery were twenty cases with BAEP changes and facial EMG changes in twenty one cases. The changes of intraoperative neurophysiologic monitoring did not always result in poor functional outcomes. However, most predictable intraoperative monitoring changes were wave III-V complex losses in BAEP and continuous neurotonic activities in facial EMG. Conclusion : These results indicate that intraoperative neurophysiologic monitoring in CPA tumor surgery usually provide predictive value for postoperative functional outcomes.

  • PDF

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

Inhibitory Effects of Phylligenin on the Proliferation of Cultured Rat Neural Progenitor Cells

  • Lee, Sung-Hoon;Go, Hyo-Sang;Choi, Chang-Soon;Cheong, Jae-Hoon;Han, Sun-Young;Bae, Ki-Hwan;Ko, Kwang-Ho;Park, Seung-Hwa
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.48-55
    • /
    • 2010
  • Neural progenitor cells (NPCs) differentiate into astrocytes, neurons and oligodendrocytes, which is controlled by various factors in brain. Recent evidences suggest that small molecules modulating the proliferation and differentiation of NPCs may have therapeutic value as well as the potential use as chemical probes. Phylligenin is a lignan with anti-inflammatory activity that is isolated from the fruits of Forsythia koreana. We investigated effects of phylligenin on proliferation and differentiation of NPCs. Treatment of phylligenin decreased the number of proliferating NPCs in culture without effects on the differentiation and survival of neural cells such as neurons and astrocytes. To examine the mechanism of the decreased NPCs number, we performed cell cycle analysis. Proliferation of NPCs was decreased via G1-S transition block by phylligenin treatment, and it was mediated by the increase of p21 level. However, phylligenin did not induce apoptosis of NPCs as determined by TUNEL assay and PARP cleavage. We also found that viability of glioma cell lines such as C6 and U87MG glioma cells, but not that of primary neuron and astrocyte, was inhibited by phylligenin. These results suggest that phylligenin selectively inhibits proliferation of rapidly growing cells such as neural stem cells and glioma cells. Given that the possible role of brain tumor stem cells in the pathology of brain cancers, the inhibitory effects of phylligenin might be useful in the development of new therapeutic agents against brain cancers.