Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.1.048

Inhibitory Effects of Phylligenin on the Proliferation of Cultured Rat Neural Progenitor Cells  

Lee, Sung-Hoon (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Go, Hyo-Sang (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Choi, Chang-Soon (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University)
Han, Sun-Young (Pharmacology Research Center, Korea Research Institute of Chemical Technology)
Bae, Ki-Hwan (College of Pharmacy, Chungnam University)
Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Park, Seung-Hwa (Center for Geriatric Neuroscience Research, IBST, and Research Institute of Medical Sciences, School of Medicine, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.18, no.1, 2010 , pp. 48-55 More about this Journal
Abstract
Neural progenitor cells (NPCs) differentiate into astrocytes, neurons and oligodendrocytes, which is controlled by various factors in brain. Recent evidences suggest that small molecules modulating the proliferation and differentiation of NPCs may have therapeutic value as well as the potential use as chemical probes. Phylligenin is a lignan with anti-inflammatory activity that is isolated from the fruits of Forsythia koreana. We investigated effects of phylligenin on proliferation and differentiation of NPCs. Treatment of phylligenin decreased the number of proliferating NPCs in culture without effects on the differentiation and survival of neural cells such as neurons and astrocytes. To examine the mechanism of the decreased NPCs number, we performed cell cycle analysis. Proliferation of NPCs was decreased via G1-S transition block by phylligenin treatment, and it was mediated by the increase of p21 level. However, phylligenin did not induce apoptosis of NPCs as determined by TUNEL assay and PARP cleavage. We also found that viability of glioma cell lines such as C6 and U87MG glioma cells, but not that of primary neuron and astrocyte, was inhibited by phylligenin. These results suggest that phylligenin selectively inhibits proliferation of rapidly growing cells such as neural stem cells and glioma cells. Given that the possible role of brain tumor stem cells in the pathology of brain cancers, the inhibitory effects of phylligenin might be useful in the development of new therapeutic agents against brain cancers.
Keywords
Neural progenitor cells; Phylligenin; Proliferation; p21; Glioma;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Diamandis, P., Wildenhain, J., Clarke, I. D., Sacher, A. G., Graham, J., Bellows, D. S., Ling, E. K., Ward, R. J., Jamieson, L. G., Tyers, M. and Dirks, P. B. (2007). Chemical genetics reveals a complex functional ground state of neural stem cells. Nat. Chem. Biol. 3, 268-273.   DOI
2 Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.   DOI   ScienceOn
3 Kim, S. J., Son, T. G., Park, H. R., Park, M., Kim, M. S., Kim, H. S., Chung, H. Y., Mattson, M. P. and Lee, J. (2008). Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J. Biol. Chem. 283, 14497-14505.   DOI
4 Schneider, J. W., Gao, Z., Li, S., Farooqi, M., Tang, T. S., Bezprozvanny, I., Frantz, D. E. and Hsieh, J. (2008). Smallmolecule activation of neuronal cell fate. Nat. Chem. Biol. 4, 408-410.   DOI
5 Saxe, J. P., Wu, H., Kelly, T. K., Phelps, M. E., Sun, Y. E., Kornblum, H. I. and Huang, J. (2007). A phenotypic smallmolecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol. 14, 1019-1030.   DOI
6 Sherr, C. J. and Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501-1512.   DOI
7 Diamandis, P., Sacher, A. G., Tyers, M. and Dirks, P. B. (2009). New drugs for brain tumors? Insights from chemical probing of neural stem cells. Med. Hypotheses 72, 683-687.   DOI
8 Conover, J. C. and Notti, R. Q. (2008). The neural stem cell niche. Cell Tissue Res. 331, 211-224.   DOI
9 Cavin, A., Potterat, O., Wolfender, J. L., Hostettmann, K. and Dyatmyko, W. (1998). Use of on-flow LC/1H NMR for the study of an antioxidant fraction from Orophea enneandra and isolation of a polyacetylene, lignans, and a tocopherol derivative. J. Nat. Prod. 61, 1497-1501.   DOI
10 Conti, L., Pollard, S. M., Gorba, T., Reitano, E., Toselli, M., Biella, G., Sun, Y., Sanzone, S., Ying, Q. L., Cattaneo, E. and Smith, A. (2005). Niche-independent symmetrical selfrenewal of a mammalian tissue stem cell. PLoS. Biol. 3, e283.   DOI
11 Warashina, M., Min, K. H., Kuwabara, T., Huynh, A., Gage, F. H., Schultz, P. G. and Ding, S. (2006). A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chem. Int. Ed. Engl. 45, 591-593.   DOI
12 Weinberg, W. C. and Denning, M. F. (2002). P21Waf1 control of epithelial cell cycle and cell fate. Crit. Rev. Oral Biol. Med. 13, 453-464.   DOI
13 Zhou, X. D., Wang, X. Y., Qu, F. J., Zhong, Y. H., Lu, X. D., Zhao, P., Wang, D. H., Huang, Q. B., Zhang, L. and Li, X. G. (2009). Detection of cancer stem cells from the C6 glioma cell line. J. Int. Med. Res. 37, 503-510.   DOI   ScienceOn
14 Lim, H., Lee, J. G., Lee, S. H., Kim, Y. S. and Kim, H. P. (2008). Anti-inflammatory activity of phylligenin, a lignan from the fruits of Forsythia koreana, and its cellular mechanism of action. J. Ethnopharmacol. 118, 113-117.   DOI
15 Rishton, G. M. (2008). Small molecules that promote neurogenesis in vitro. Recent Pat. CNS Drug Discov. 3, 200-208.   DOI
16 Martino, G., and Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395-406.
17 Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F. and Vescovi, A. L. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761-765.
18 Qiang, L., Yang, Y., Ma, Y. J., Chen, F. H., Zhang, L. B., Liu, W., Qi, Q., Lu, N., Tao, L., Wang, X. T., You, Q. D. and Guo, Q. L. (2009). Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett. 279, 13-21.   DOI
19 Shin, C. Y., Choi, J. W., Jang, E. S., Ju, C., Kim, W. K., Kim, H. C., Choi, C. R., and Ko, K. H. (2001). Dehydroepiandrosterone inhibits the death of immunostimulated rat C6 glioma cells deprived of glucose. Brain Res. 922, 267-275.   DOI
20 Shin, C. Y., Choi, J. W., Ryu, J. R., Ko, K. H., Choi, J. J., Kim, H. S., Lee, J. C., Lee, S. J., Kim, H. C. and Kim, W. K. (2002). Glucose deprivation decreases nitric oxide production via NADPH depletion in immunostimulated rat primary astrocytes. Glia 37, 268-274.   DOI
21 Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J. and Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
22 Stiles, C. D. and Rowitch, D. H. (2008). Glioma stem cells: a midterm exam. Neuron 58, 832-846.   DOI
23 Temple, S. (2001). The development of neural stem cells. Nature 414, 112-117.   DOI
24 Vescovi, A. L., Galli, R. and Reynolds. B. A. (2006). Brain tumour stem cells. Nat. Rev. Cancer 6, 425-436.   DOI
25 Singh, S. K., Clarke, I. D., Hide, T. and Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene. 23, 7267-7273.   DOI
26 Benoit, B. O., Savarese, T., Joly, M., Engstrom, C. M., Pang, L., Reilly, J., Recht, L. D., Ross, A. H. and Quesenberry, P. J. (2001). Neurotrophin channeling of neural progenitor cell differentiation. J. Neurobiol. 46, 265-280.   DOI