• Title/Summary/Keyword: Brain-Computer Interface

Search Result 196, Processing Time 0.021 seconds

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc (아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어)

  • Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.254-259
    • /
    • 2015
  • In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

A Study on EEG based Concentration transmission and Brain Computer Interface Application (뇌파기반 집중도 전송 및 BCI 적용에 관한 연구)

  • Lee, Chung-Heon;Kwon, Jang-Woo;Kim, Gyu-Dong;Lee, Jun-Oh;Hong, Jun-Eui;Lee, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.155-156
    • /
    • 2008
  • This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP-100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measure EEG signal. As a result, ${\alpha}$ wave, ${\beta}$ wave, ${\theta}$ wave and ${\delta}$ wave were classified. we extracted the concentration index by adapting concentration extraction algorithm. This concentration index was transferred into lego automobile device by wireless module and applied for BCI application.

  • PDF

Device Control System based on Brain Wave Data (뇌파데이터 기반의 디바이스 제어 시스템)

  • Lee, So-Hyun;Lee, Ye-Jeong;Lee, Seok-cheol;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.813-815
    • /
    • 2016
  • This paper implements a device control system based on the brain wave data. Brain-Computer Interface (BCI) technology can pass directly to the system without going through the operation of the language or body. By controlling the device to detect brain waves in real time according to the change of status it helps to ease life for a variety of services, such as disabled people with limited mobility or students, people who need multi-tasking. In addition, it is possible to develop an application service such as the home device control system. A device control system implemented in the paper based on the data collected from the EEG Headset associated to control the power of the smart phone and audio. Control the power ON / OFF operation by the Attention, and support service functions to control the audio by the Meditation and Eye blink. It was confirmed that the device control using the brain wave data to be operated through a laboratory test successfully.

  • PDF

A Control method of Left-Right directions by analyzing EEG Signals (뇌파 신호 분석에 의한 좌우 방향 제어 방법)

  • Kim, Hong-Kee;Kim, Ki-Hong;Kim, Jong-Sung;Son, Wook-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1005-1010
    • /
    • 2006
  • 인체에서 발생하는 생체신호 중에서 뇌파는 신호가 복잡하고 재현이 어려움에도 불구하고 BCI(Brain Computer Interface) 분야에서는 선진국 선두 그룹을 중심으로 획기적인 기술을 개발하고 있다. 또한 BCI 에 대한 개발의 필요성도 손발을 사용하지 못하는 중증 장애인을 중심으로 확대되고 있다. BCI2000 시스템은 이러한 노력으로 탄생하였으며 BCI 선두 그룹을 중심으로 개발 발전되고 있다. 이 시스템 내부에서는 순수 상상에 의한 방향 인식과 가상키보드 등의 작업이 가능하도록 수정 보완 작업이 계속되고 있으며 정기적인 모임을 통해 그 기술을 공유하고 있다. BCI 에서의 선진그룹과 국내 연구 결과에는 많은 기술적 차이가 있지만 본 연구에서는 BCI 에서의 기술 발전에 자극되어 좌우 방향의 이벤트에 대한 뇌파 신호 분석과 이를 통하여 모니터 상의 방향을 제어하는 실험을 실시하였고 그 방법과 결과를 논의한다.

  • PDF

Partial Least Squares-discriminant Analysis for the Prediction of Hemodynamic Changes Using Near Infrared Spectroscopy

  • Seo, Youngwook;Lee, Seungduk;Koh, Dalkwon;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Using continuous wave near-infrared spectroscopy, we measured time-resolved concentration changes of oxy-hemoglobin and deoxy-hemoglobin from the primary motor cortex following finger tapping tasks. These data were processed using partial least squares-discriminant analysis (PLS-DA) to develop a prediction model for a brain-computer interface. The tasks were composed of a series of finger tapping for 15 sec and relaxation for 45 sec. The location of the motor cortex was confirmed by the anti-phasic behavior of the oxy- and deoxy-hemoglobin changes. The results were compared with those obtained using the hidden Markov model (HMM) which has been known to produce the best prediction model. Our data imply that PLS-DA makes better judgments in determining the onset of the events than HMM.

Discrimination of EEG Signal about left and right Motor Imagery (왼쪽과 오른쪽 움직임의 상상에 대한 뇌파의)

  • 음태완;김응수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.373-376
    • /
    • 2004
  • 최근에 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 뇌-컴퓨터 인터페이스BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다. 이러한 BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 본 논문에서는 움직임과 관련 있는 10~12Hz의 mu파 영역에서의 ERD/ERS를 계산하였고, 그 결과 왼쪽과 오른쪽 손의 움직임을 상상할 때에 운동과 관련된 기능이 집중되어 있는 일차운동영역(primary motor area)의 mu파에서 ERD/ERS의 차이가 나타남을 발견하였다 또한, RLS방법을 사용한 Adaptive Autoregressive Model 계수의 특징을 추출을 하였으며, 이를 신경망으로 학습시켜 인식률을 비교하였다.

  • PDF

Improved Feature Extraction of Hand Movement EEG Signals based on Independent Component Analysis and Spatial Filter

  • Nguyen, Thanh Ha;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.515-520
    • /
    • 2012
  • In brain computer interface (BCI) system, the most important part is classification of human thoughts in order to translate into commands. The more accuracy result in classification the system gets, the more effective BCI system is. To increase the quality of BCI system, we proposed to reduce noise and artifact from the recording data to analyzing data. We used auditory stimuli instead of visual ones to eliminate the eye movement, unwanted visual activation, gaze control. We applied independent component analysis (ICA) algorithm to purify the sources which constructed the raw signals. One of the most famous spatial filter in BCI context is common spatial patterns (CSP), which maximize one class while minimize the other by using covariance matrix. ICA and CSP also do the filter job, as a raw filter and refinement, which increase the classification result of linear discriminant analysis (LDA).

Human Emotion Recognition Method using EEG Signals by Bayesian Networks (Bayesian Networks 이용한 EEG 신호에서의 사람의 감정인식 방법 개발)

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.151-154
    • /
    • 2008
  • 본 논문은 Bayesian Networks를 이용해서 EEG 신호를 분석해서 사람의 감정을 분석하는 방법을 제안하였다. 현제 연구자들은 Electroencephalogram(EEG) 신호를 기반으로 사람의 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. 기존에는 간질이나 발작 등을 의학 분야와 사람의 정서에 따라 뇌파분석을 하는 심리학의 영역에서 연구가 되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스를 통한 여러 가지 공학적인 접근이 이루어지고 있다. 본 논문에서는 사람의 감정에 따라 Brain-Computer Interface (BCI)를 통해서 EEG 신호를 분석하고 잡음을 제거해서 보다 정확한 신호를 추출한 다음 각각의 주파수 영역으로 분류를 하였다. 분류된 값들은 Bayesian Networks를 이용해서 피 실험자가 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 확률 값에 의해서 피 실험자가 어떠한 감정인지를 인식하게 되는 것이다.

  • PDF

A Time-Frequency Analysis of the EEG for Yes/No response III (긍/부정 문답 관련 뇌파에 대한 시간-주파수 분석 III)

  • 남승훈;류창수;신승철;임태규;송윤선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.286-290
    • /
    • 2002
  • 두뇌-컴퓨터 인터페이스(brain-computer interface)를 적용하기 위한 연구로서 주어진 문제에서 긍/부정을 선택할 때 나타나는 뇌파를 분별하기 위해서 시간-주파수 분석을 하였다. 단시간 퓨리에 변환(short time fourier transform : STFT)을 하여 긍/부정 선택시 뇌파의 시간-주파수 변화량을 보고, 시간-주파수 분해능이 좋은 웨이블릿 변환(wavelet transform)을 적용하여 서로 비교하였다. 두 가지 분석에서 공통된 결과는 주로 RT전 0.5초 주위에서 유의미한 결과를 나타내었고, 웨이블릿 분석에서 더 좁은 구간에 나타나며, 통계적으로 더 유의미한 결과를 나타내었다.

  • PDF

Brain-Computer Interface for Direction Control (방향 제어를 위한 뇌-컴퓨터 인터페이스)

  • 양은주;김응수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.469-472
    • /
    • 2002
  • 사람의 뇌 속에 있는 신경 세포들은 여러 정보 처리 활동을 하면서 전기적인 신호를 발생시키는데 이를 두피 표면에서 측정한 것이 뇌파이다. 이러한 뇌파는 임상에서 주로 이용되어 왔으나 근래에는 이러한 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다 BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 이를 위하여 본 연구에서는 좀 더 정확하고 신뢰성 있는 기기 제어를 위해 피험자의 의지대로 발생시킨 잡파를 이용하여 방향 제어 시스템을 구현하였다. 뇌파에 포함된 잡파 중 구별될 수 있는 특징을 나타내는 잡파를 선택하고 이들의 패턴을 인식하고 분류한 후 이를 제어 신호로 변환하여 방향을 제어하는 시스템을 구현하였다.