• 제목/요약/키워드: Brain activation

Search Result 715, Processing Time 0.022 seconds

Neuroglial Cell and Alzheimer's Disease (신경아교세포와 알츠하이머 병)

  • Kim, Jeong Lan
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.40-46
    • /
    • 2015
  • Neuroglial cells are fundamental for brain homeostasis and defense to intrinsic or extrinsic changes. Loss of their function and over-reactivity to stimuli contribute to the aging of brain. Alzheimer's disease (AD) could be caused by more dramatic response in neuroglia associated with various chemokines and cytokines. Neuroglia of the AD brain shares some phenotypes with aging neuroglia. In addition, neuroglial activation and neuroinflammation are commonly showed in neurodegeneration. Thus neuroglia would be a promising target for therapeutics of AD.

Differences between 20s and 40s in Activation of the Parietal and Frontal Areas during Visuospatial Task (공간 과제 수행 시 20대와 40대의 두정엽과 전두엽에서의 활성화 차이)

  • You, Ji-Hye;Hong, Yong-Pyo;Lee, Hang-Woon;Lee, Soo-Yeol;Chung, Soon-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.318-322
    • /
    • 2006
  • The purpose of this study is to examine differences between 20s and 40s in visuospatial performance and brain activation areas using functional Magnetic Resonance Imaging (fMRI). Eight male college students in their twenties ($21.5{\pm}2.3$ years old) and six male adults in their forties ($45.7{\pm}2.6$ years old) who were graduated from college participated in the study. A visuospatial task was presented while brain images were acquired by a 3T fMRI system. Compared to the 20s the 40s showed lower visuospatial performance. There were more activations observed at the parietal and superior frontal areas at 20s compared to 40s. There were more activations observed at the middle frontal and occipital areas at 40s compared to 20s. The results of this study show that the lowering of visuospatial performance with aging was correlated to the decrease of activation area at the parietal lobe and the change of activation area at the frontal lobe.

Cortical Activation in the Human Brain induced by Transcranial Direct Current Stimulation (경두개 직류전류 자극이 대뇌피질의 뇌 활성도에 미치는 영향)

  • Kwon, Yong-Hyun;Kim, Chung-Sun;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2009
  • Purpose: Recently, neurostimulation studies involving manipulation of cortical excitability of the human brain have been increasingly attempted. We investigated whether transcranial direct current stimulation (tDCS) applied to the underlying cerebral cortex, directly induces cortical activation during fMRI scanning. Methods: We recently recruited five healthy subjects without a neurological or psychiatric history and who were right-handed, as verified by the modified Edinburg Handedness Inventory. fMRI was done while constant anodal tDCS was delivered to the underlying SM1 area?? immediately after the pre-stimulation for eighteen minutes. Results: Group analysis yielded an averaged map that showed that the SM1 area and the superior parietal cortex in the ipsilateral hemisphere were activated. The voxel size and peak intensity were, respectively, 82 and 5.22 in the SM1, and 85 and 5.77 in the superior parietal cortex. Conclusion: Cortical activation can be induced by constant anodal tDCS of the underlying motor cortex. This suggests that tDCS may be an effective therapeutic device for enhancing? physical motor function by modulating neural excitability of the motor cortex.

  • PDF

The Development of the Brain-based Analysis Framework for the Evaluation of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 평가를 위한 두뇌기반 분석틀의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.647-667
    • /
    • 2010
  • The purpose of this study was to develop a brain-based analysis framework for evaluating teachinglearning program in science. To develop the framework, this study categorized educational constructs of the teachinglearning programs into one of three teaching-learning factors: cognition, motive, and emotion, using previous studies on science program. Ninety-three articles on the brain functions associated with science program were analyzed to extract brain activation regions related to the three educational constructs. After delineating the brain activation regions, we designed the brain function map, "the CORE Brain Map." Based on this brain map, we developed a brain-based analysis framework for evaluating science teaching-learning program using R & D processes. This framework consists of the brain regions, the bilateral dorsolateral prefrontal cortex, the bilateral ventrolateral prefrontal cortex, the bilateral orbitofrontal cortex, the anterior cingulate gyrus, the bilateral parietal cortex, the bilateral temporal cortex, the bilateral occipital cortex, the bilateral hippocampus, the bilateral amygdala, the bilateral nucleus accumbens, the bilateral striatum and the midbrain regions. These brain regions are associated with the aforementioned three educational factors; cognition, motivation, and emotion. The framework could be applied to the analysis and diagnosis of various teaching and learning programs in science.

Evaluation of Quantitative Effectiveness of MR-DTI Analysis with and without Functional MRI (기능적 자기공명영상 사용유무에 따른 확산텐서영상 분석의 유효성 평가)

  • Lee, Dong-Hoon;Park, Ji-Won;Hong, Cheol-Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Purpose: This study was conducted in order to evaluate the quantitative effectiveness of region of interest (ROI) setting in MR-DTI analysis with and without fMRI activation results. Methods: Ten right-handed normal volunteers participated in this study. DTI and fMRI datasets for each subject were obtained using a 1.5T MRI system. For neural fiber tracking, ROIs were drawn using two methods: The drawing points were located in the fMRI activation areas or areas randomly selected by users. In this study, the neural fiber tract targeted the corticospinal tract (CST) Quantitative analyses were performed and compared. The pixel numbers passing through the fiber tract in the individual brain volume were counted. The ratios between the ROI pixel numbers and the extracted fiber pixel numbers, and the ratios between the fiber pixel numbers and the whole-brain pixel numbers were also calculated. Results: According to our results, extracted CST fiber tract in which the ROI was drawn with fMRI activation areas showed higher distribution than drawing the ROI by users' hands. In addition, the quantitatively measured values represented higher pixel distribution: The counted average pixel numbers were 4553.8 and 1943.3. The average ratios of the ROI areas were 33.87 and 22.52. The average percentages of the individual whole-brain volume numbers were 2.06 and 0.87. Conclusion: Results of this study appear to indicate that use of this method can allow for more objectives and significant for study of the recovery of neural fiber mechanisms and brain rehabilitation.

Brain Activation during Intentionality Detection: An fMRI Study (지향성 탐지 과정의 뇌 활성화: 기능적 자기공명 영상 연구)

  • Lee, Seung-Bok;Park, Min;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • We applied fMRI to examine brain activation at intentionality detection (ID) task. The main purpose of this study was to explore whether brain activation regions involved in intentionality detection (known as the basic mechanism of theory of mind) differ or not, according to prior instruction. Left uncus, superior temporal gyrus and right inferior occipital gyrus, supramarginal gyrus, inferior parietal lobule, thalamus (medial dorsal nucleus), and precuneus were activated with prior instruction. In contrast, ID task with no instruction activated merely inferior parietal lobule and superior parietal lobule. Common activated area between the two instruction conditions was inferiordparietal lobule. Our results suggest thar prior instruction activated ID-related brain regions more explicitly. furtherdinvestigations would be loused on spontaneity of intentionality detector and characteristic of participants.

  • PDF

Activation of Autophagy Pathway Suppresses the Expression of iNOS, IL6 and Cell Death of LPS-Stimulated Microglia Cells

  • Han, Hye-Eun;Kim, Tae-Kyung;Son, Hyung-Jin;Park, Woo Jin;Han, Pyung-Lim
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • Microglia play a role in maintaining and resolving brain tissue homeostasis. In pathological conditions, microglia release pro-inflammatory cytokines and cytotoxic factors, which aggravate the progression of neurodegenerative diseases. Autophagy pathway might be involved in the production of pro-inflammatory cytokines and cytotoxic factors in microglia, though details of the mechanism remain largely unknown. In the present study, we examined the role of the autophagy pathway in activated BV2 microglia cells. In BV2 cells, rapamycin treatment activated the formation of anti-LC3-labeled autophagosomes, whereas the ATG5 depletion using siRNA-ATG5 prevented the formation of LC3-labeled autophagosomes, indicating that BV2 cells exhibit an active classical autophagy system. When treated with LPS, BV2 cells expressed an increase of anti-LC3-labeled dots. The levels of LC3-labeled dots were not suppressed, instead tended to be enhanced, by the inhibition of the autophagy pathway with siRNA-ATG5 or wortmannin, suggesting that LPS-induced LC3-labeled dots in nature were distinct from the typical autophagosomes. The levels of LPS-induced expression of iNOS and IL6 were suppressed by treatment with rapamycin, and conversely, their expressions were enhanced by siRNA-ATG5 treatment. Moreover, the activation of the autophagy pathway using rapamycin inhibited cell death of LPS-stimulated microglia. These results suggest that although microglia possess a typical autophagy pathway, the glial cells express a non-typical autophagy pathway in response to LPS, and the activation of the autophagy pathway suppresses the expression of iNOS and IL6, and the cell death of LPS-stimulated microglia.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

Homogeneity Analysis for the SMR Brainwave by the Functional Lateralization of the Brain Based on the Science Learning Methods

  • Kwon, Hyung-Kyu;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.721-733
    • /
    • 2007
  • The purpose of this research was to determine the effects of the functional lateralization of the brain variables related to the sex, the scientific attitude and the scientific exploration skills. The science instruction is divided in each type of the lecturing class with the experiment class. As for the degree of SMR brainwave activation in each stage are presented while accumulating the brain waves from the right, left and the whole brain waves are analyzed during the science learning activities. It is therefore reasonable to consider the science instruction types and brain lateralization to enhance the science learning effectiveness. Sensorimotor rhythm brainwave as the low Beta is represented well to show the thought process. Category quantification scores and objective scores are calculated to show the visual positioning map for the relationships of the categories by homogeneity analysis.

  • PDF

Functional Reorganization Associated with Semantic Language Processing in Temporal Lobe Epilepsy Patients after Anterior Temporal Lobectomy: A Longitudinal Functional Magnetic Resonance Image Study

  • Kim, Jae-Hun;Lee, Jong-Min;Kang, Eun-Joo;Kim, June-Sic;Song, In-Chan;Chung, Chun-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2010
  • Objective: The focus of this study is brain plasticity associated with semantic aspects of language function in patients with medial temporal lobe epilepsy (mTLE) Methods: Using longitudinal functional magnetic resonance imaging (fMRI), patterns of brain activation were observed in twelve left and seven right unilateral mTLE patients during a word-generation task relative to a pseudo-word reading task before and after anterior temporal section surgery. Results: No differences were observed in precentral activations in patients relative to normal controls (n = 12), and surgery did not alter the phonological-associated activations. The two mTLE patient groups showed left inferior prefrontal activations associated with semantic processing (word-generation>pseudo-word reading), as did control subjects. The amount of semantic-associated activation in the left inferior prefrontal region was negatively correlated with epilepsy duration in both patient groups. Following temporal resection, semantic-specific activations in inferior prefrontal region became more bilateral in left mTLE patients, but more left-lateralized in right mTLE patients. The longer the duration of epilepsy in the patients, the larger the increase in the left inferior prefrontal semantic-associated activation after surgery in both patient groups. Semantic activation of the intact hippocampus, which had been negatively correlated with seizure frequency, normalized after the epileptic side was removed. Conclusion: These results indicate alternation of semantic language network related to recruitment of left inferior prefrontal cortex and functional recovery of the hippocampus contralateral to the epileptogenic side, suggesting an intra- and inter-hemispheric reorganization following surgery.