References
- Akar, U., Chaves-Reyez, A., Barria, M., Tari, A., Sanguino, A., Kondo, Y., Kondo, S., Arun, B., Lopez-Berestein, G. and Ozpolat, B. (2008) Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4, 669-679. https://doi.org/10.4161/auto.6083
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C. E., Frautschy, S., Griffin W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer's disease. Neurobiol. Aging 2, 383-421.
- Alirezaei, M., Kiosses, W. B. and Fox, H. S. (2008) Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity. Autophagy 4, 963-966. https://doi.org/10.4161/auto.6805
- Beurel, E. and Jope, R. S. (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J. Neuroinflammation 6, 9. https://doi.org/10.1186/1742-2094-6-9
- Canadien, V., Tan, T., Zilber, R., Szeto, J., Perrin, A. J. and Brumell, J. H. (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J. Immunol. 174, 2471-2475. https://doi.org/10.4049/jimmunol.174.5.2471
- Eriksson, U. K., Pedersen, N. L., Reynolds, C. A., Hong, M. G., Prince, J. A., Gatz, M., Dickman, P. W. and Bennet, A. M. (2011) Associations of gene sequence variation and serum levels of C-reactive protein and interleukin-6 with Alzheimer's disease and dementia. J. Alzheimers Dis. 23, 361-369.
- Fujita, K., Maeda, D., Xiao, Q. and Srinivasula, S. M. (2011) Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc. Natl. Acad. Sci. USA 108, 1427-1432. https://doi.org/10.1073/pnas.1014156108
- Gehrmann, J., Matsumoto, Y. and Kreutzberg, G. W. (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res. Rev. 20, 269-287. https://doi.org/10.1016/0165-0173(94)00015-H
- Gross, S. S. and Wolin, M. S. (1995) Nitric oxide: pathophysiological mechanisms. Annu. Rev. Physiol. 57, 737-769. https://doi.org/10.1146/annurev.ph.57.030195.003513
-
Han, H. E., Sellamuthu S, Shin, B.H., Lee, Y.J., Song, S., Seo, J. S., Beak, I. S., Bae, J., Kim, H., Yoo, Y. J., Jung, Y. K., Song, W. K., Han, P. L. and Park, W. J. (2010) The nuclear inclusion a (NIa) protease of turnip mosaic virus (TuMV) cleaves amyloid-
$\beta$ . PLoS One 5, e15645. https://doi.org/10.1371/journal.pone.0015645 - Hanisch, U. K. (2002) Microglia as a source and target of cytokines. Glia 40, 140-155. https://doi.org/10.1002/glia.10161
- Henkel, J. S., Beers, D. R., Zhao, W. and Appel, S. H. (2009) Microglia in ALS: the good, the bad, and the resting. J. Neuroimmune Pharmacol. 4, 389-398. https://doi.org/10.1007/s11481-009-9171-5
- Iadecola, C., Zhang, F., Casey, R., Nagayama, M. and Ross, M. E. (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157-9164.
-
Im, J. Y., Joo, H. J. and Han, P. L. (2011) Rapid disruption of cellular integrity of Zinc-treated astroglia is regulated by p38MAPK and
$Ca^{2+}$ -dependent mechanisms. Exp. Neurobiol. 20, 45-53. https://doi.org/10.5607/en.2011.20.1.45 - Kabeya, Y., Mizushima N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
- Kim, S. W. and Lee, J. K. (2007) NO-induced downregulation of HSP10 and HSP60 expression in the postischemic brain. J. Neurosci. Res. 85, 1252-1259. https://doi.org/10.1002/jnr.21236
-
Lee, J., Kim, H. R., Quinley, C., Kim, J., Gonzalez-Navajas, J., Xavier, R. and Raz, E. (2012) Autophagy suppresses interleukin-1
$\beta$ (IL-1$\beta$ ) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. J. Biol. Chem. 287, 4033-4040. https://doi.org/10.1074/jbc.M111.280065 - Lee, J. H., Yu, W. H., Kumar, A., Lee, S., Mohan, P. S., Peterhoff, C. M., Wolfe, D. M., Martinez-Vicente, M., Massey, A. C., Sovak, G., Uchiyama, Y., Westaway, D., Cuervo, A. M. and Nixon, R. A. (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146-1158. https://doi.org/10.1016/j.cell.2010.05.008
- Lelouard, H., Ferrand, V., Marguet, D., Bania, J., Camosseto, V., David, A., Gatti, E. and Pierre, P. (2004) Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J. Cell Biol. 164, 667-675. https://doi.org/10.1083/jcb.200312073
- Lelouard, H., Gatti E., Cappello, F., Gresser, O., Camosseto, V. and Pierre P. (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177-182. https://doi.org/10.1038/417177a
- Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
- Lu, Y. C., Yeh, W. C. and Ohashi, P. S. (2008) LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151. https://doi.org/10.1016/j.cyto.2008.01.006
- Magazine, H. I., Liu, Y., Bilfinger, T. V., Fricchione, G. L. and Stefano, G. B. (1996) Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. J. Immunol. 156, 4845-4850.
- Matsumoto, Y., Ohmori, K. and Fujiwara, M. (1992) Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J. Neuroimmunol. 37, 23-33. https://doi.org/10.1016/0165-5728(92)90152-B
- Mayo, L. and Stein, R. (2007) Characterization of LPS and interferon-gamma triggered activation-induced cell death in N9 and primary microglial cells: induction of the mitochondrial gateway by nitric oxide. Cell Death Differ. 14, 183-186. https://doi.org/10.1038/sj.cdd.4401989
- McGeer, P. L., Itagaki, S., Boyes, B. E. and McGeer, E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291. https://doi.org/10.1212/WNL.38.8.1285
- Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., Hamada, S. and Yoshimori, T. (2004) Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040. https://doi.org/10.1126/science.1103966
- Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W. and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
- Nixon, R. A. and Yang, D. S. (2011) Autophagy failure in Alzheimer's disease--locating the primary defect. Neurobiol. Dis. 43, 38-45. https://doi.org/10.1016/j.nbd.2011.01.021
- Perry, V. H., Nicoll, J. A. and Holmes, C. (2010) Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193-201. https://doi.org/10.1038/nrneurol.2010.17
- Raine, C. S. (1994) Multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol. 53, 328-337. https://doi.org/10.1097/00005072-199407000-00002
- Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O'Kane, C. J. and Rubinsztein, D. C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595. https://doi.org/10.1038/ng1362
- Rosello, A., Warnes, G. and Meier, U. C. (2012) Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die--that is the question. Clin. Exp. Immunol. 168, 52-57. https://doi.org/10.1111/j.1365-2249.2011.04544.x
- Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B. G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T. and Akira, S. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268. https://doi.org/10.1038/nature07383
- Sarkar, S. and Rubinsztein, D. C. (2008) Small molecule enhancers of autophagy for neurodegenerative diseases. Mol. Biosyst. 4, 895-901. https://doi.org/10.1039/b804606a
- Semmler, A., Frisch, C., Debeir, T., Ramanathan, M., Okulla, T., Klockgether, T. and Heneka, M. T. (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp. Neurol. 204, 733-740. https://doi.org/10.1016/j.expneurol.2007.01.003
- Shi, C. S. and Kehrl, J. H. (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283, 33175-33182. https://doi.org/10.1074/jbc.M804478200
- Sims, K., Haynes, C. A., Kelly, S., Allegood, J. C., Wang, E., Momin, A., Leipelt, M., Reichart, D., Glass, C. K., Sullards, M. C. and Merrill, A. H. Jr. (2010) Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J. Biol. Chem. 285, 38568-38579. https://doi.org/10.1074/jbc.M110.170621
- Singh, S. B., Davis, A. S., Taylor, G. A. and Deretic, V. (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438-1441. https://doi.org/10.1126/science.1129577
- Smith, J. A., Das, A., Ray, S. K. and Banik, N. L. (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 87, 10-20. https://doi.org/10.1016/j.brainresbull.2011.10.004
- Strauss, S., Bauer, J., Ganter, U., Jonas, U., Berger, M. and Volk, B. (1992) Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer's disease patients. Lab. Invest. 66, 223-230.
- Szeto, J., Kaniuk, N. A., Canadien, V., Nisman, R., Mizushima, N., Yoshimori, T., Bazett-Jones, D. P. and Brumell, J. H. (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2, 189-199. https://doi.org/10.4161/auto.2731
- Virgin, H. W. and Levine, B. (2009) Autophagy genes in immunity. Nat. Immunol. 10, 461-470. https://doi.org/10.1038/ni.1726
- Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H. and Przedborski, S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763-1771.
- Xu, Y., Jagannath, C., Liu, X. D., Sharafkhaneh, A., Kolodziejska, K. E. and Eissa, N. T. (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144. https://doi.org/10.1016/j.immuni.2007.05.022
- Yu, Y. M., Kim, J. B., Lee, K. W., Kim, S. Y., Han, P. L. and Lee, J. K. (2005) Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke 36, 2238-2243. https://doi.org/10.1161/01.STR.0000181779.83472.35
- Yuan, K., Huang, C., Fox, J., Laturnus, D., Carlson, E., Zhang, B., Yin, Q., Gao, H. and Wu, M. (2012) Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J. Cell Sci. 125, 507-515. https://doi.org/10.1242/jcs.094573
- Zhang, F., Casey, R. M., Ross, M. E. and Iadecola, C. (1996) Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 27, 317-323. https://doi.org/10.1161/01.STR.27.2.317
- Zoncu, R., Efeyan, A. and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21-35. https://doi.org/10.1038/nrm3025
Cited by
- 3-(3-Butylamino-2-hydroxy-propoxy)-1-hydroxy-xanthen-9-one acts as a topoisomerase IIα catalytic inhibitor with low DNA damage vol.69, 2013, https://doi.org/10.1016/j.ejmech.2013.07.048
- SENP1 inhibits the IH-induced apoptosis and nitric oxide production in BV2 microglial cells vol.467, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.10.092
- P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia vol.11, 2017, https://doi.org/10.3389/fncel.2017.00249
- The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats vol.267, 2015, https://doi.org/10.1016/j.expneurol.2015.03.013
- The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro vol.142, pp.2, 2017, https://doi.org/10.1111/jnc.14042
- Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells vol.63, pp.1, 2014, https://doi.org/10.1007/s00011-013-0674-4
- Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion vol.39, 2016, https://doi.org/10.1016/j.intimp.2016.06.030
- Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways vol.1862, pp.5, 2017, https://doi.org/10.1016/j.bbalip.2017.02.010
- The role of autophagy in modulation of neuroinflammation in microglia vol.319, 2016, https://doi.org/10.1016/j.neuroscience.2016.01.035
- Autophagy resolves early retinal inflammation in Igf1 -deficient mice vol.9, pp.9, 2016, https://doi.org/10.1242/dmm.026344
- Autophagy in hemorrhagic stroke: Mechanisms and clinical implications 2017, https://doi.org/10.1016/j.pneurobio.2017.04.002
- Intracellular release of rapamycin from poly (lactic acid) nanospheres modifies autophagy vol.27, pp.13, 2016, https://doi.org/10.1080/09205063.2016.1195158
- Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle vol.593, pp.12, 2015, https://doi.org/10.1113/JP270093
- Neuroprotective effects of intrastriatal injection of rapamycin in a mouse model of excitotoxicity induced by quinolinic acid vol.14, pp.1, 2017, https://doi.org/10.1186/s12974-017-0793-x
- Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity vol.151, pp.2, 2014, https://doi.org/10.1016/j.jep.2013.12.009
- Activating Autophagy in Hippocampal Cells Alleviates the Morphine-Induced Memory Impairment vol.54, pp.3, 2017, https://doi.org/10.1007/s12035-016-9735-3
- Rapamycin Is Neuroprotective in a Rat Chronic Hypertensive Glaucoma Model vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099719
- Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death vol.7, 2017, https://doi.org/10.1038/srep43153
- Burkholderia pseudomallei rpoSmediates iNOS suppression in human hepatocyte (HC04) cells vol.363, pp.15, 2016, https://doi.org/10.1093/femsle/fnw161
- Atorvastatin Prevents Neuroinflammation in Chronic Constriction Injury Rats through Nuclear NFκB Downregulation in the Dorsal Root Ganglion and Spinal Cord vol.6, pp.6, 2015, https://doi.org/10.1021/acschemneuro.5b00032
- Drp1-dependent mitochondrial fission regulates p62-mediated autophagy in LPS-induced activated microglial cells pp.1347-6947, 2018, https://doi.org/10.1080/09168451.2018.1549933
- Phoenixin Expression Is Regulated by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00838
- restrains autophagy and promotes CNS inflammation by targeting ATG16L1 pp.1554-8635, 2018, https://doi.org/10.1080/15548627.2018.1522467
- Autophagic Induction Greatly Enhances Leishmania major Intracellular Survival Compared to Leishmania amazonensis in CBA/j-Infected Macrophages vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01890
- Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury vol.145, pp.2, 2018, https://doi.org/10.1111/jnc.14317
- N , N -disubstituted azines attenuate LPS-mediated neuroinflammation in microglia and neuronal apoptosis via inhibiting MAPK signaling pathways vol.18, pp.None, 2017, https://doi.org/10.1186/s12868-017-0399-3
- Structural Optimization of Caffeoyl Salicylate Scaffold as NO Production Inhibitors vol.67, pp.9, 2013, https://doi.org/10.1248/cpb.c19-00366
- Deciphering the Role Played by Autophagy in Leishmania Infection vol.10, pp.None, 2013, https://doi.org/10.3389/fimmu.2019.02523
- TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia vol.15, pp.5, 2019, https://doi.org/10.1080/15548627.2018.1556946
- The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-κB pathway vol.40, pp.10, 2013, https://doi.org/10.1038/s41401-019-0225-9
- iNOS Interacts with Autophagy Receptor p62 and is Degraded by Autophagy in Macrophages vol.8, pp.10, 2019, https://doi.org/10.3390/cells8101255
- Astragalus membranaceus Injection Suppresses Production of Interleukin-6 by Activating Autophagy through the AMPK-mTOR Pathway in Lipopolysaccharide-Stimulated Macrophages vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1364147
- Minocycline Induces Autophagy and Inhibits Cell Proliferation in LPS-Stimulated THP-1 Cells vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/5459209
- Protective Effects of Rapamycin on Trabecular Meshwork Cells in Glucocorticoid-Induced Glaucoma Mice vol.11, pp.None, 2013, https://doi.org/10.3389/fphar.2020.01006
- Chlorogenic Acid Improves Symptoms of Inflammatory Bowel Disease in Interleukin-10 Knockout Mice vol.23, pp.10, 2013, https://doi.org/10.1089/jmf.2019.4621
- Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice vol.16, pp.12, 2020, https://doi.org/10.1080/15548627.2020.1719723
- Rifampicin Suppresses Amyloid-β Accumulation Through Enhancing Autophagy in the Hippocampus of a Lipopolysaccharide-Induced Mouse Model of Cognitive Decline vol.79, pp.3, 2013, https://doi.org/10.3233/jad-200690
- Melatonin prevents diabetes‐associated cognitive dysfunction from microglia‐mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway vol.35, pp.4, 2013, https://doi.org/10.1096/fj.202002247rr
- Glaucoma and neuroinflammation: An overview vol.66, pp.5, 2013, https://doi.org/10.1016/j.survophthal.2021.02.003
- NADPH-Oxidase, Rho-Kinase and Autophagy Mediate the (Pro)renin-Induced Pro-Inflammatory Microglial Response and Enhancement of Dopaminergic Neuron Death vol.10, pp.9, 2013, https://doi.org/10.3390/antiox10091340