• 제목/요약/키워드: Brain activation

검색결과 719건 처리시간 0.023초

공황장애의 뇌영상 및 신경생물학적 식견 (Brain Imaging Provides Insight into the Neurobiology of Panic Disorder)

  • 박주언;강은호;이인수;유범희
    • 대한불안의학회지
    • /
    • 제3권2호
    • /
    • pp.91-96
    • /
    • 2007
  • Panic disorder is a common psychiatric illness that causes considerable morbidity. However, the biological basis of panic disorder remains unclear. In this report, we present and summarize the current literature on functional neuroimaging studies related to the neurobiology of panic disorder. The findings were summarized and divided into six groups : (1) known brain structures related to anxiety, especially panic disorder ; (2) structural results ; (3) functional imaging studies at rest ; (4) functional imaging studies with challenge testing ; (5) neuroreceptor studies ; and (6) changes in the treatment of panic disorder. Based on the findings of these neuroimaging studies, it seems as though panic disorder involves the hippocampal and parahippocampal areas, including the amygdala, as well as some cortical regions, such as the temporal and prefrontal cortices. Panic disorder is known to be associated with an imbalance between the right and left hemispheres of the brain at rest or during panic attacks. During a panic attack, patients with panic disorder are likely to experience an increase in local activity in the cingulate, insula, midbrain, and so on. On the other hand, a widespread reduction in the cortical areas has also been reported in most provocation studies. Thus, panic disorder may be related to the excess activation of the fear networks in response to subtle environmental cues and insufficient inhibition from higher cortical control areas ; however ; further studies are recommended in order to fully understand the neurobiology of panic disorder.

  • PDF

뇌기능 연결성 모델링을 위한 통계적 방법 (Statistical methods for modelling functional neuro-connectivity)

  • 김성호;박창현
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1129-1145
    • /
    • 2016
  • 뇌기능 연결성 문제는 뇌의 신경역학적 현상과 밀접한 관련이 있다는 의미에서 뇌과학에서 주요 연구주제이다. 본 논문에서는 기능적 자기공명영상(fMRI)자료를 뇌활동에 대한 반응 자료의 주요 형태로써 선택하였는데, 이 fMRI자료는 높은 해상도 때문에 뇌과학 연구에서 선호되는 자료 형태이다. 뇌활동에 대한 생리학적 반응을 측정해서 자료로 사용한다는 전제하에서 뇌의 기능적 연결성을 분석하는 방법들을 고찰하였다. 여기서의 전제란 상태공간 및 측정 모형을 다룬다는것을 의미하는데, 여기서 상태공간 모형은 뇌신경역학을 표현한다고 가정한다. 뇌기능 영상자료의 분석은 무엇을 측정하였느냐에 따라서 분석방법과 그 해석이 조금씩 달라진다. 실제 fMRI자료를 고차원 자기회귀모형을 적용해서 분석한 결과를 논문에 포함하였는데, 이 결과를 통해서 서로 다른 도형문제를 푸는데 서로 다른 뇌신경 역학관계가 요구된다는 것을 엿볼 수 있었다.

카드뮴이 뇌혈관 내피세포에서의 $PGE^2$ 및 COX-2 발현에 미치는 영향 (Cadmium-induced COX-2 Expression in Cerebrovascular Endothelial Cells)

  • 박동현;김영채;문창규;정이숙;백은주;문창현;이수환
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권3호
    • /
    • pp.275-282
    • /
    • 2006
  • In order to get insight into the mechanism of cadmium (Cd)-induced brain injury, we investigated the effects of Cd on the induction of COX-2 in bEnd.3 mouse brain endothelial cells. Cd induced COX-2 expression and $PGE_2$ release, which were attenuated by thiol-reducing antioxidant N-acetylcysteine (NAC) indicating oxidative components might contribute to these events. Indeed, Cd increased cellular reactive oxygen species (ROS) level and DNA binding activity of nuclear factor-kB (NF-kB), an oxidative stress sensitive transcription factor. Cd-induced $PGE_2$ production and COX-2 expression were significantly attenuated by Bay 11 7082, a specific inhibitor of NF-kB and by SB203580, a specific inhibitor of p38 mitogen activated protein kinase (MAPK). These data suggest that Cd induces COX-2 expression through activation of NF-kB and p38 MAPK, the oxidative stress-sensitive signaling molecules, in brain endothelial cells.

Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가 (Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection)

  • 신재영
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권6호
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

흡연갈망의 신경해부학적 특이성:기능자기공명영상연구 (fMRI Investigation on Cue-induced Smoking Craving:A Case Report)

  • 임현국;배치운;이창욱
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.68-72
    • /
    • 2005
  • Object:Nicotine dependence is the most common substance abuse disorder. One of the characteristics of nicotine dependence is craving. Regional activation of the brain induced by craving for nicotine was evaluated by using functional magnetic resonance imaging to investigate neuroanatomical site of smoking craving. Method:A smoker who satisfied DSM-IV criteria for nicotine dependence and a non smoker was studied. MRI data were acquired on a 1.5T Magnetom Vision Plus with a head volume coil. Two sets of visual stimuli were presented to subjects in a random manner. One was the film scenes of inducing smoking craving and the other was neutral stimuli not related to smoking. There were two fMRI sessions before and after smoking or sham smoking. Data were analyzed using SPM99. Results:fMRI showed significant activated area in anterior cingulate and medial frontal lobes in the smoker during smoking craving. Right dorsolateral prefrontal cortex and parietal lobes were activated in the control during visual stimulation before smoking. After smoking, there was no brain activation during visual stimulation in both of smoker and non smoker. Conclusion:Metabolic activity of the anterior cingulate and medial frontal lobes increased during craving for smoking. This result suggests that fMRI may be a valuable tool in the identification of neurobiological process of craving.

  • PDF

Probiotic Mixture KF Attenuates Age-Dependent Memory Deficit and Lipidemia in Fischer 344 Rats

  • Jeong, Jin-Ju;Kim, Kyung-Ah;Ahn, Young-Tae;Sim, Jae-Hun;Woo, Jae-Yeon;Huh, Chul-Sung;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1532-1536
    • /
    • 2015
  • To investigate the memory-enhancing effect of lactic acid bacteria, we selected the probiotic mixture KF, which consisted of Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 (1 × 1011 CFU/g of each strain), and investigated its antilipidemic and memoryenhancing effects in aged Fischer 344 rats. KF (1 × 1010 CFU/rat/day), which was administered orally once a day (6 days per week) for 8 weeks, significantly inhibited age-dependent increases of blood triglyceride and reductions of HDL cholesterol (p < 0.05). KF restored agereduced spontaneous alternation in the Y-maze task to 94.4% of that seen in young rats (p < 0.05). KF treatment slightly, but not significantly, shortened the escape latency daily for 4 days. Oral administration of KF restored age-suppressed doublecortin and brain-derived neurotrophic factor expression in aged rats. Orally administered KF suppressed the expression of p16, p53, and cyclooxygenase-2, the phosphorylation of Akt and mTOR, and the activation of NF-κB in the hippocampus of the brain. These findings suggest that KF may ameliorate age-dependent memory deficit and lipidemia by inhibiting NF-κB activation.

스키 시뮬레이션을 통한 행동관찰에서 뇌파의 변화 (Changes in Electroencephalogram for Action Observation of Ski Simulation)

  • 송종철;황태연;강종호;윤세원;김문정;김용남
    • 대한임상전기생리학회지
    • /
    • 제9권1호
    • /
    • pp.15-21
    • /
    • 2011
  • Purpose : This study aims to examine the effects of action observation of ski simulation on electroencephalogram (EEG). Methods : Thirty healthy subjects were randomly divided into three groups: 10 participants in an AM (actual movement) group; 10 participants in an OM (observation) group; and 10 participants in a CM (control movement) group. The EEG was measured to examine changes in EEG between action observation and actually movement at 8 areas of the scalp for one minute before, during and after action observation. Results : Relative alpha power showed statistically significant differences among groups in Cz and C4 and there were interactions among groups in the Oz area. Relative beta power showed no statistical significance among groups and in particular, there were interactions among groups in the Oz area. Conclusion : These findings show that action observation affected brain activation as in actual movement. Thus it can be expected that when movement through the brain activation is applied to patients in bed rest or those who cannot perform actually movement, it can be utilized as physiotherapy.

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권4호
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena

  • Maeng, Sejung;Yoon, Sung Woo;Kim, Eun Jeong;Nam, Yoon Kwon;Sohn, Young Chang
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.333-344
    • /
    • 2019
  • In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in mediation of estrogenic signaling pathways. In the present study, we report the cDNA cloning, expression analysis, and transcriptional activity of ERβ1 subtype from medaka Oryzias dancena. The deduced O. dancena ERβ1 (odERβ1; 519 amino acids) contained six characteristic A/B to E/F domains with very short activation function 2 region (called AF2). A phylogenetic analysis indicated that odERβ1 was highly conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed that the odERβ1 transcripts were widely distributed in the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle. Further, the relatively higher odERβ1 expressions in the ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused odERβ1 expression vector was transfected into HEK293 cells, an immunoreactivity for odERβ1 was mainly detected in the nucleus part. Finally, an estrogen responsive element driven luciferase reporter assays demonstrated that the transcriptional activity of odERβ1 significantly increased by estradiol-17β (E2) in a dose dependent manner (p<0.05). However, fold-activation of odERβ1 in the presence of E2 was markedly weak, when it compared with those of O. latipes ERβ1. Taken together, these data suggest that odERβ1 represents a functional variant of teleost ERβ subtype and provides a basic tool allowing future studies examining the function of F domain of ERβ1 subtype and expanding our knowledge of ERβ evolution.

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration

  • Kim, Sungmin;Kim, Min-Soo;Park, Kwanghoon;Kim, Hyeon-Joong;Jung, Seok-Won;Nah, Seung-Yeol;Han, Jung-Soo;Chung, ChiHye
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.55-61
    • /
    • 2016
  • Background: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of $K^+$ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice.We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.