• Title/Summary/Keyword: Bracket System

Search Result 188, Processing Time 0.027 seconds

A prediction of maximum operation speed for the catenary using tunnel bracket (터널 브래킷을 사용한 가선시스템의 최고속도 예측 및 검토)

  • ;;;M'hamed Matri
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.628-635
    • /
    • 2000
  • The catenary system supported by the tunnel bracket which has been used uniquely in KNR was selected as the catenary inside narrow existing tunnel in the electrification of Kyeung-Bu Line for operation of Korea High Speed Train(KTX). It was demanded to judge the maximal operable speed of KTX in this catenary system to implement the planning. To do this, the tunnel bracket was firstly tested to obtain the characteristic data. The stiffness of this bracket are computed depending on the location which catenary installed on. Moreover, the catenary using tunnel bracket is modelled numerically respecting the bracket stiffness. Based on these, the dynamics between this catenary and KTX pantograph are simulated with the program developed by ourselves independently. The simulation result are evaluated according to the generally acceptable criteria. Consequently, the maximal operable speed of KTX in the catenary using KNR(Korean National Railroad) tunnel bracket is predicted and some items which are needed to be kept in the processing of implementation are drawn.

  • PDF

A Study on Improvement of Correction Bracket Performance Using Optimal Structural Design (최적구조설계를 이용한 교정브라켓 성능향상에 관한 연구)

  • Li, Jung Hua;Kweon, Hyun Kyu;Gwon, Dong Jae;Park, Sang Jun;Jeon, Yoo Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • There has always been a demand for orthodontic treatment. Orthodontic treatment allows tooth to be arranged by flexible arch wire fixed with tooth-attached brackets. Arch wire generate constant pressure to tooth brackets which moves the teeth to proper place. When the bracket transmits force, the braced wing of the bracket may deform. Deformed tie wing will lead to lost tension of elastic ligature. Then, lacking grip between tie wing and ligature might delay the tooth movement. Furthermore, tooth brackets used for orthodontic treatment make contact with in direct oral surface and this cause feeling of irritation that comes from height of tooth braces. This study suggests an optimal teethe bracket design to make up for inconvenience by shorten the height of bracket and complement the shape of bracket to reduce strain rate using finite element analysis. As a result, new optimal design of teethe bracket indicates lower strain rate of the bracket wing and takes good effects of shorten body height in terms of convenience.

DEVELOPMENT AND APPLICATION OF SUBSTRUCTURE NON SUPPORTING FORMWORK FOR TOP-DOWN CONSTRUCTION

  • Mee-Ra Jeong;Hong-Chul Rhim;Doo-Hyun Kang;Kwang-Jun Yoo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.788-793
    • /
    • 2009
  • Constructing substructures by using Top-Down or Downward method needs an efficient formwork system because of difficulties in supporting concrete slabs from the bottom while excavation is in process. Existing underground formwork systems can be classified by three types: graded ground supported type (Slab On Grade, Beam On Grade), suspension type (Non Supporting Top Down Method), and bracket supported type (Bracket Supported R/C Downward). Each method has its own advantages and limits. Application of a specific formwork system for a given construction site is determined by various conditions and affect construction time and cost. This paper presents a newly developed underground non-supporting formwork system, which combines the advantages of a suspension type and a bracket supported type while it overcomes limits of two types. The developed system has a moving formwork which is supported by suspension cables hanging from the bracket placed at the top of pre-installed substructure columns. Then, the moving formwork is repeatedly lowered down for the next floor below to support concrete slab during curing. The details of this bracket and cable supported system have been investigated for the improvement of easiness in construction.

  • PDF

COMPARISON OF THE FRICTIONAL RESISTANCE BETWEEN ORTHODONTIC BRACKET & ARCHWIRE (교정용 BRACKET과 ARCHWIRE 사이의 마찰저항에 대한 비교연구)

  • Sung, Hyun Mee;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.543-560
    • /
    • 1991
  • Practitioners are aware of the presence of friction between bracket system and archwire during sliding movement of teeth. Clinically a mesiodistally applied force must exceed the frictional force to produce a tooth movement. The objective of this study were to determine, on a dry condition, changes in magnitude of friction with respect to load, 3rd order inclination (Torque), archwire materials and ligature type. Three wire alloys (Stainless Steel, TMA, NiTi) in two wire sizes (.016, .016x, .022 inch) were examined respect to two bracket system (Straight, Standard), and two ligature type (Metal, Plastic ligature) at three levels of load (100g, 150g, 200g). The results were as follows; 1. Frictional resistance was found to increase with increasing load for S.S., TMA, NiTi. 2. The straight bracket system was exhibited more frictional force than standard bracket system for .016x, .022 S.S. tightly ligated metal ligature. But, torque difference did not increase friction for loose metal ligature & plastic ligature. 3. Regardless of the ligature type, torque and load, stainless steel wire sliding against stainless steel exhibited the lowest friction, and TMA sliding against stainless steel exhibited the highest friction. 4. The loose stainless steel ligature generated lower frictional resistance than plastic ligature in all experimental groups. 5. The following factors affected friction in decreasing order; wire material ligature type, and load.

  • PDF

Dynamic Load calculation at the Bracket of High Speed Train Catenary System (고속전철 가선계 가동 브래킷의 동적하중 계산)

  • Choi, Yeon-Sun;Lee, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.588-593
    • /
    • 2006
  • The catenary system of a high speed train is designed to have a flexibility to ensure the contact with a pantograph during high speed running. The flexibility inevitably entails a vibration. The vibration is transferred to a utility pole through brackets. Therefore, the examination of the dynamic load at the bracket due to the train running is necessary for the design of the bracket. In this research, an equation of motion is derived to calculate the dynamic load at the bracket during high speed running and a computer program is developed. Also, the analyzed results are compared to characterize the dynamic load at the bracket.

Dynamic Stress Analysis of Structural Connection using FRF-based Substructuring Method (구조물의 연결부에서 전달함수합성법을 이용한 동응력 해석)

  • 공태식;김찬묵;이두호;서세영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1195-1201
    • /
    • 2002
  • Researches on the FRF-based substructuring method have been mainly focused on vibratory response analysis. Present study Is concerned about the application of the method to the dynamic stress analysis of a air-conditioner compressor mounting bracket in a passenger car. This is performed by using reaction forces that can be obtained by the FRF-based substructuring method. The air-conditioner system, composed of a compressor and bracket, Is analyzed by using the FRF-based substructuring method. The experimental and numerical FRFs are combined to calculate the system responses and reaction forces at the connection point. The dynamic reaction forces plugged into the bracket FE model to compute the stresses of the bracket Dynamic strains by the present method are compared with those from strain-gage test for bracket system on shaker. The comparison shows possibility of practical usage of the method for the real problem

  • PDF

The Mutual Effect and Meanings of the Decoration Elements between Bracket Styles in the Mid-Joseon Period (조선중기 공포형식 간의 장식요소 상호영향과 그 의미)

  • Hong, Byung-Hwa
    • Journal of architectural history
    • /
    • v.25 no.6
    • /
    • pp.27-34
    • /
    • 2016
  • There were lots of changes of the wooden structure in the middle of Joseon Dynasty. It was the time of replacement from Jusimpo (simple bracket system) to Ikgong (wing-like bracket system) and each bracket had shown mutual variation as well as itself. The aspects of change were discovered that the decorative elements of Ikgong and Dapo (multi-bracket system) had accepted from each other. It was clearly shown that not only the Ungung (carved cloud-shape) and Chotgaji (shape of the acuminate leaf) of Ikgong had affected to Dapo, but also Gaang (pseudo-pointing cantilever) of Dapo had affected to Ikgong. It was mostly found in the Buddhist architecture because there was the conservatization of ruling hierarchy as well as the active growth of Buddhist society.

Investigation of Bracket Deflection Influence on Structural Safety of Scaffold System (브라켓의 변위가 비계 구조 안전성에 미치는 영향 분석)

  • Kim, Dong Hyun;Lee, Hyung Do;Won, Jeong-Hun;Jung, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • This study examined the structural behavior of bracket scaffolds reflecting the influence of bracket's deflection. Even though the supporting condition of bracket scaffolds is different to that of general earth-supported scaffolds, there is no clear standards about the installation of bracket scaffolds. To compare the structural behaviors of the earth-supported scaffolds without settlements in columns and those of bracket scaffolds installed on the bracket structure, the finite element analysis was performed. The results show that the differential settlement between the scaffold columns installed on the bracket was occurred due to the deflection of the bracket. The differential settlement gave birth to remarkable secondary stress to the scaffold columns. It is resonable to locate all scaffold columns on the brackets, and if unavoidable situation is faced at a site, the horizontal members should not placed alone without columns on the brackets. Moreover, the structural analysis should be performed to ensure structural safety of bracket scaffolds before installation. In addition, the location of wall connection to the structures is recommended to the scaffolds columns installed on the brackets.

A Study on the Derivation of Bracket Structure Terminology in Yingzaofashi in the Era of Song Dynasty (송대(宋代) ${\ll}$영조법식(營造法式)${\gg}$ 대목작(大木作) 포작(鋪作) 관련용어의 파생에 관한 연구)

  • Kim, Jae-Ung
    • Journal of architectural history
    • /
    • v.20 no.2
    • /
    • pp.55-70
    • /
    • 2011
  • This paper aimed at analyzing of structural carpentry terminology for bracket structure in Yingzaofashi ${\ll}$營造法式${\gg}$in the era of Song Dynasty and illuminating coinage characteristics and method of Structural Carpentry Terminology for bracket Structure through graphonomy research and system and structure of these terms. The results are as follow. The structural carpentry terminologies for structure were identified to be approximately 23 words, and terminology of bracket structure鋪作 is largely categorized into 3 categories of Type鋪作次序, Structure, Place. On the other hand, the structural carpentry terminologies for parts largely categorized into 2 categories of Bracket structure鋪作, Others. Bracket structure terminologies for parts were derived from the core of Dou枓, Gong栱, Ang昂, Fang方. The phenomena of derivation in structural carpentry terminology for bracket structure can be explained by the difference in the shape of subsidiary material and the location for usage of the subsidiary material and part of the subsidiary material and their functions.