• 제목/요약/키워드: Box design

Search Result 1,445, Processing Time 0.03 seconds

Design Alterations of a Packing Box for the Semiconductor Wafer to Improve Stability (Wafer Packing Box 안정화 설계)

  • Yoon, Jae-Hoon;Hur, Jang-Wook;Yi, Il-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.62-66
    • /
    • 2022
  • Semiconductor is one of the most internationally competitive areas among domestic industries, the major concern of which is the stability of the wafer manufacturing processes. The packaging process is the final step in wafer manufacturing. Problems in the wafer packaging process cause large losses. The vibrations are supposed to be the most important factors for the packaging quality. In this study, the structure of a packaging box was analyzed through experiments and computer simulations, and further the effects of design alterations to suppress the vibrations have been investigated. The final result shows that the vibrations can be reduced substantially to improve the stability of the structure.

Development of Stress Evaluation Equation of Circular Column-Box Beam Connections (원형기둥-상자형보 접합부의 응력평가식 개발)

  • 이주혁;김정환;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

A Method for RBF-based Approximate Optimization of Expensive Black Box Functions (고비용 블랙박스 함수의 RBF기반 근사 최적화 기법)

  • Park, Sangkun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.443-452
    • /
    • 2016
  • This paper proposes a method for expensive black box optimization using radial basis functions (RBFs). The proposed algorithm is a computational strategy that uses a RBF model approximating the expensive black box function to predict an optimum. First, a RBF-based approximation technique is introduced and a sampling plan for estimation of the black box function is described. Then the proposed algorithm is explained, which presents the pseudo-codes for implementation and the detailed description of each step performed in the optimization process. In addition, numerical experiments will be given to analyze the performance of the proposed algorithm, by investigating computation accuracy, number of function evaluations, and convergence history. Finally, geometric distance problem as application example will be also presented for showing the algorithm applicability to different engineering problems.

Structural Design of Box Beam Header

  • Jang, Sang-Sik;Park, Young-Ran;Kim, Yun-Hui
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • To obtain a design data for box beams used as headers in light-frame timber construction, $2{\times}6\;(38{\times}140mm),\;2{\times}8\;(38{\times}184mm),\;2{\times}10\;(38{\times}235mm)\;and\;2{\times}12\;(38{\times}286mm)$ members were built as box beam specimens for bending tests. The allowable bending stresses for box beams were obtained through bending tests of these specimens, and span tables were calculated for various loading conditions based on the allowable bending stresses obtained. The allowable bending stresses were determined as the bending stresses at 10mm deflection of specimens from the results of bending tests of box beam specimens. Span tables for box beams were obtained assuming five loading conditions for headers used in exterior walls and two loading conditions for headers used in interior walls. Among these 7 loading conditions, 5 loading conditions applied to headers in exterior walls included the dead loads, the live loads and the snow loads and 2 loading conditions applied to headers in interior walls included the dead loads and the live loads.

  • PDF

Optimal Design of the Rotor Structure by using Box-Behnken Method for IPMSM (Box-Behnken법을 이용한 매입형 영구자석 동기전동기의 회전자 구조 최적설계)

  • Han, Jung-Ho;Kim, Won-Ho;Jang, Ik-Sang;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Jae-Jun;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.949-950
    • /
    • 2011
  • There are various ways of optimizing rotor design of Interior Permanent Magnet Synchronous Motors(IPMSM). In this paper, the best optimized design value was found by varying the Bridge thickness of PM in the rotor and changing Rib. The set design values were torque, 5 harmonics, 7 harmonics, and safety factor. Also, in order to make practical design value easily and quickly for optimization, Box-Behnken of Response Surface Method(RSM) method was used. Therefore, IPMSM resulted an optimized design model with high torque, low harmonics, and constant value of safety factor.

  • PDF

A Study on Optimum Reliability of P.S.C Box Girder Bridge (최적신뢰성에 의한 P.S.C Box Girder교의 연구)

  • Jung, Chul-Won;Yu, Han-Shin;Na, Ki-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.139-144
    • /
    • 1999
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabiliistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on P.S.C Box Girder Bridge system which could possibly replace optimum design based traditional provisions of the current code, based on the Neldel-Mead Method reliability theory.

  • PDF

A Study on tile Cross Section Optimization of P.C Box-Girder Bridge (P.C 박스거더교의 횡단면 최적설계에 관한 연구)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.101-104
    • /
    • 1990
  • The program which could determine cross-sectional dimensions of the box girder bridge at tile stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost and time required in the design of box girder bridges and the construction with the prestressed precast segmental method. Objective cost function consisted of four independent variables such as widths and depth of the cross-section. The Nelder-Mead method was used to solve the nonconstrained nonlinear problem like this.

  • PDF

A New Design Technique for BSB(Brain-State-in-a-Box) Neural Networks (새로운 방식의 BSB(brain-state-in-a-box) 신경망 설계)

  • Yoon, Seong-Sik;Park, Joo-Young;Park, Dai-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.971-973
    • /
    • 1995
  • This paper presents a new design technique that can be used for brain-state-in-a-box neural networks to realize associative memories. The applicability of the technique is demonstrated by means of a simulation example, which illustrates its strengths.

  • PDF

A Study for the Performance Based Strengthening Design of Underground Box Structure in Urban Railway (도시철도 지하박스 구조물의 내진성능 보강설계 연구)

  • Kwon, Min-Ho;Kim, Si-Kyeok;Kim, Ki-Hong;Jang, Young-Du;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1143-1148
    • /
    • 2011
  • In this study, seismic structural reinforcement are carried out, based on the estimated seismic performance of underground box structures in urban railway, and displacement based design method was developed to enhance seismic performance of structures. New seismic reinforcement design method is proposed and compared with existing design methods. And presented an overview of the developed design methodology through a design example to verify the validity of that methods.

  • PDF

BIM based Design of Steel Box Girder (STEEL BOX 교량 상부구조의 BIM기반 설계)

  • Lee, Jin-Kyoung;Lee, Heon-Min;You, Jae-Myoung;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.1 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • In domestic construction industry, there is lack of the communication between planning, design, construction and maintenance. This problem makes the omission of information and the loss of cost. Therefore, the introduction of BIM can be a solution about that. BIM manages all information generated during all life-cycle of a structure and consequently maximizes the efficiency of utilizing information. This is done through 3D information model associated with a three-dimensional(3D) parametric CAD. This study proposes the design process of steel box bridge for structural design work of bridge construction project based on BIM. This process has 3D modeling progress done by using the information decided in design phase. When the subject for the proposed process is superstructure of steel box bridge in construction, the structural calculation sheet can be derived with the structural design process based on BIM.