• 제목/요약/키워드: Bovine single nucleotide polymorphism

검색결과 52건 처리시간 0.036초

Identification of markers associated with estimated breeding value and horn colour in Hungarian Grey cattle

  • Zsolnai, Attila;Kovacs, Andras;Kaltenecker, Endre;Anton, Istvan
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.482-488
    • /
    • 2021
  • Objective: This study was conducted to estimate effect of single nucleotide polymorphisms (SNP) on the estimated breeding value of Hungarian Grey (HG) bulls and to find markers associated with horn colour. Methods: Genotypes 136 HG animals were determined on Geneseek high-density Bovine SNP 150K BeadChip. A multi-locus mixed-model was applied for statistical analyses. Results: Six SNPs were identified to be associated (-log10P>10) with green and white horn. These loci are located on chromosome 1, 3, 9, 18, and 25. Seven loci (on chromosome 1, 3, 6, 9, 10, 28) showed considerable association (-log10P>10) with the estimated breeding value. Conclusion: Analysis provides markers for further research of horn colour and supplies markers to achieve more effective selection work regarding estimated breeding value of HG.

Effect of single nucleotide polymorphisms on intramuscular fat content in Hungarian Simmental cattle

  • Anton, Istvan;Huth, Balazs;Fuller, Imre;Rozsa, Laszlo;Hollo, Gabriella;Zsolnai, Attila
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1415-1419
    • /
    • 2018
  • Objective: To estimate effect of single nucleotide polymorphisms on the intramuscular fat content (IMF) of Hungarian Simmental bulls. Methods: Genotypes were determined on high-density Illumina Bovine DNA Chip. After slaughtering of animals, chemical percentage of intramuscular fat was determined from longissimus dorsi muscle. A multi-locus mixed-model was applied for statistical analyses. Results: Analyses revealed four loci (rs43284251, rs109210955, rs41630030, and rs41642251) to be highly associated ($-{\log}_{10}P$>12) with IMF located on chromosome 1, 6, 13, and 17, respectively. The frequency of their minor alleles was 0.426, 0.221, 0.162, and 0.106. Conclusion: The loci above can be useful in selection programs and gives the possibility to assist selection by molecular tools.

Genetic Polymorphisms of the Bovine NOV Gene Are Significantly Associated with Carcass Traits in Korean Cattle

  • Kim, B.S.;Kim, S.C.;Park, C.M.;Lee, S.H.;Cho, S.H.;Kim, N.K.;Jang, G.W.;Yoon, D.H.;Yang, B.S.;Hong, S.K.;Seong, H.H.;Choi, B.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.780-787
    • /
    • 2013
  • The objective of this study was to investigate single nucleotide polymorphisms (SNPs) in the bovine nephroblastoma overexpressed (NOV) gene and to evaluate whether these polymorphisms affect carcass traits in the Korean cattle population. We resequenced to detect SNPs from 24 unrelated individuals and identified 19 SNPs within the full 8.4-kb gene, including the 1.5-kb promoter region. Of these 19 SNPs, four were selected for genotyping based on linkage disequilibrium (LD). We genotyped 429 steers to assess the associations of these four SNPs with carcass traits. Statistical analysis revealed that g.7801T>C and g.8379A>C polymorphisms in the NOV gene were associated with carcass weight (p = 0.012 and 0.008, respectively), and the g.2005A>G polymorphism was associated with the back fat thickness (BF) trait (p = 0.0001). One haplotype of the four SNPs (GGTA) was significantly associated with BF (p = 0.0005). Our findings suggest that polymorphisms in the NOV gene may be among the important genetic factors affecting carcass yield in beef cattle.

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle

Multiplex allele specific PCR 방법을 이용한 한우고기와 젖소고기의 신속한 판별 (Rapid differentiation of Hanwoo and Holstein meat using multiplex allele specific polymerase chain reaction protocols)

  • 고바라다
    • 대한수의학회지
    • /
    • 제45권3호
    • /
    • pp.351-357
    • /
    • 2005
  • Here I describe a multiplex allele specific PCR-based approach for the rapid detection between Hanwoo and Holstein meat associated with Melanocortin 1 receptor (MC1R) gene. Specific and universal oligonucleotide primers were used in combination to detect the presence of a single nucleotide polymorphism within the bovine MC1R DNA sequence. The presence of the bovine MC1R gene is indicated by the production of a single control PCR product, whilst positive samples generate an alternative smaller specific product over the same region. The mutations in MC1R104 codon revealed depending on the presence or absence of an indicative fragment amplified from the wild-type allele of this codon. As little as 0.39 ng and 1.56 ng of genomic DNA of Hanwoo and Holstein could be detected by MAS-PCR assay, respectively. This technique, which is widely used in human genetic screening, provides a reliable and sensitive result that has not been documented for the identification of bovine coat color. The MAS-PCR assay approach was proven to be useful in complementing routine beef DNA analysis for differentiation of these MC1R variants and it would facilitate the screening of deceiving sales of Holstein meat in the butcher shop.

Highly Polymorphic Bovine Leptin Gene

  • Yoon, D.H.;Cho, B.H.;Park, B.L.;Choi, Y.H.;Cheong, H.S.;Lee, H.K.;Chung, E.R.;Cheong, I.C.;Shin, H.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1548-1551
    • /
    • 2005
  • The leptin, an anti-obesity protein, is a hormone protein expressed and secreted mainly from adipocyte tissue, and involved in regulation of body weight, food intake and energy metabolism. In an effort to discover polymorphism(s) in genes whose variant(s) might be implicated in phenotypic traits of growth, we have sequenced exons and their boundaries of leptin gene including 1,000 bp upstream of promoter region with twenty-four unrelated Korean cattle. Fifty-seven sequence variants were identified: fourteen in 5' flanking region, twenty-seven in introns, eight in exons, and eight in 3' flanking region. By pair-wise linkage analysis among polymorphisms, ten sets of SNPs were in absolute linkage disequilibrium (LD) (|D'| = 1 and $r^2$ = 1). Among variants identified, thirty-six SNPs were newly identified, and twenty-one SNPs, which were reported in other breeds, were also confirmed in Korean cattle. The allele frequencies of variants were quite different among breeds. The information from SNPs of bovine leptin gene could be useful for further genetic studies of this gene.

Predicting the Accuracy of Breeding Values Using High Density Genome Scans

  • Lee, Deuk-Hwan;Vasco, Daniel A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.162-172
    • /
    • 2011
  • In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.

단일염기다형성 마커를 이용한 백우 품종 식별 방법 (Identification of White Hanwoo Breed Using Single Nucleotide Polymorphism Markers)

  • 김승창;김관우;노희종;김동교;김성우;김찬란;이상훈;고응규;조창연
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.240-246
    • /
    • 2020
  • 본 연구는 백우 품종 육성을 위해 분자생물학적 방법을 이용하여 유전적 특성을 파악하고 백우 품종을 식별하기 위한 백우 품종 특이적인 Single Nucleotide Polymorphism (SNP) 마커를 개발하기 위해 수행되었다. 한우 48두와 백우 22두의 혈액에서 추출된 DNA를 이용하여 Illumina Bovine HD 777K SNP chip으로 SNP genotyping을 실시하였다. 각 SNP의 Minor Allele Frequency (MAF) difference (한우와 백우의 차이 절대값)을 계산하고, Fisher's Exact test (Genotype)을 통해 MAF difference의 통계적 유의성(P-value)을 계산하였다. 품종 별 차이를 나타낼 수 있는 마커를 선발기준으로 MAF difference가 100%의 차이를 나타내는 SNP를 식별하였다. 이러한 유전적 차이를 보이는 9개의 단일염기다형성 마커(rs42125585, rs42125591, rs42125833, rs109461720, rs134735704, rs109447299, rs42164846, rs42160000 및 rs137353829)가 선발되었다. 선발된 마커들은 한우와 백우 특이적인 대립유전자를 가지고 서로 다른 대립유전자를 나타내고 있다. 이들 9개의 SNP 마커들을 이용하여 한우와 백우의 품종을 식별할 수 있음을 확인하였고, 이러한 결과들을 바탕으로 백우 품종 식별 마커 특허를 등록하였다. 백우는 원종인 한우에서 분리되어 한국재래종의 특성을 잘 나타내 주는 계통으로, 이러한 백우가 가지고 있는 유전적 특성 연구는 백우를 식별하고 품종으로서 육종하는데 사용되어 종축으로서의 가치 증진을 위한 기반 연구가 될 것으로 생각된다.

Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

  • Kim, Seungchang;Cheong, Hyun Sub;Shin, Hyoung Doo;Lee, Sung-Soo;Roh, Hee-Jong;Jeon, Da-Yeon;Cho, Chang-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1691-1699
    • /
    • 2018
  • Objective: In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods: Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results: Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average $r^2$ value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, interpopulation, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion: Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity.

Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.926-935
    • /
    • 2015
  • The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.