• Title/Summary/Keyword: Bovine Genome

Search Result 103, Processing Time 0.021 seconds

The 3rd Generation Genome Map of the Korean Cattle (Hanwoo) (제3세대 한우유전체지도작성)

  • Lee, Yong-Seok;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.123-128
    • /
    • 2009
  • Recently, the $2^{nd}$ generation genome map of the Korean cattle (Hanwoo) has been constructed by comparison of the nucleotide sequence of the Korean cattle BAC clones with whole genome sequence of the bovine data-base (B_tau 2.1 build). The objective of this study was to update the $2^{nd}$ generation genome map of the Korean cattle using the similar approach. The nucleotide sequence of the Korean cattle BAC clones utilized in the construction of the $2^{nd}$ generation map was compared with the newly released bovine data-base (B_tau 3.1 build) to generate the $3^{rd}$ generation map. While, 5,105 BAC clones were localized on bovine chromosome in the $2^{nd}$ generation map, a total of 9,595 BAC clones, which spans about 37.27% of the bovine chromosome after eliminating the overlapping sequence among the clones, have been mapped on the bovine chromosome in the $3^{rd}$ generation map. Further analysis of the nucleotide sequence of the BAC clones will allow us to develop map and facilitate to pinpoint the genes that are important for the improvement of the performance in this cattle breed.

Genomic Heritability of Bovine Growth Using a Mixed Model

  • Ryu, Jihye;Lee, Chaeyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1521-1525
    • /
    • 2014
  • This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP) information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months). This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.

Genome-wide association study on immune-response for improving healthiness in Holstein dairy cattle (Holstein 젖소의 호흡기 질병 백신에 대한 면역반응성과 전장 유전체 연관 분석 연구)

  • Ha, Seungmin;Lee, Donghui;Lee, Sangmyeong;Chae, Jungil;Seo, Kangseok
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.217-225
    • /
    • 2019
  • To detect Single nucleotide polymorphisms (SNP) markers associated with Bovine viral diarrhea virus (BVDV) and Bovine respiratory syncytial virus (BRSV) S/P ratio in Korean Holstein dairy cattle, Genome-wide association study (GWAS) was performed using Illumina BovineSNP50 Beadchip. The number of phenotype data and genotype data were 107, and 294. respectively. Phenotype data were collected for four periods (0 week, 1 week, 4 week, 24 week) after having vaccinated (0 week no vaccinated period). A total of 36,257 SNPs was remained after quality control had been done by PLINK. The result of GWAS showed 6 SNP markers (BTB-01704243, BTB-01594395, ARS-BFGL-NGS-118070, ARS-BFGL-NGS-111365, BTA-65410-no-rs, Hapmap38331-BTA-61256) under BVDV and 4 SNP markers (ARS-BFGL-NGS-109861, Hapmap53701-rs29017064, ARS-BFGL-NGS-71055, BTA-11232-no-rs) under BRSV. And also, 10 candidate genes found through 10 SNP markers (TBX18, CEP162, PAFAH1B1, METTL16, BRCA1, RND2, POLK, ENSBTAG00000051724, ADAM18, NRG3).

Helper-Independent Live Recombinant Adenovirus Vector Expressing the Hemagglutinin-Esterase Membrane Glycoprotein

  • YOO, DONGWAN;ICK-DONG YOO;YOUNG-HO YOON;FRANK L GRAHAM;LORNE A. BABIUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.174-182
    • /
    • 1992
  • The hemagglutinin-esterase glycoprotein (HE) gene of bovine coronavirus, coupled with a simian virus 40 early promoter and polyadenylation signal, was inserted into a human adenovirus transfer vector. The transfer vector was used to co-transfect 293 cells along with adenovirus genomic DNA. The hemagglutinin-esterase transcription unit was rescued into the adenovirus genome by homologous in vivo DNA recombination between the vector plasmid DNA and the adenovirus genomic DNA, and a recombinant adenovirus was isolated by several rounds of plaque assays. Thus the recombinant adenovirus carries the hemagglutinin-esterase gene in the early transcription region 3 (E3) of the adenovirus genome in the parallel orientation to the E3 transcription. The recombinant adenovirus synthesized the HE polypeptide in HeLa cells as demonstrated by immunoprecipitation with anti-coronavirus rabbit antisera. The recombinant HE polypeptide could be labelled by $[^3H]$glucosamine, demonstrating that the recombinant HE was glycosylated. Cells expressing the HE polypeptide exhibited hemadsorption activity when incubated with mouse erythrocytes. The HE was transported to the plasma membrane as shown by the cell surface immunofluorescence, indicating that the recombinant HE polypeptide retained its biological activities. Potential for the use of infectious recombinant adenovirus as a live virus-vectored vaccine candidate for bovine coronavirus disease is discussed.

  • PDF

Localization of 5,105 Hanwoo (Korean Cattle) BAC Clones on Bovine Chromosomes by the Analysis of BAC End Sequences (BESs) Involving 21,024 Clones

  • Choi, Jae Min;Chae, Sung-Hwa;Kang, Se Won;Choi, Dong-Sik;Lee, Yong Seok;Park, Hong-Seog;Yeo, Jung-Sou;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1636-1650
    • /
    • 2007
  • As an initial step toward a better understanding of the genome structure of Korean cattle (Hanwoo breed) and initiation of the framework for genomic research in this bovine, the bacterial artificial chromosome (BAC) end sequencing of 21,024 clones was recently completed. Among these clones, BAC End Sequences (BESs) of 20,158 clones with high quality sequences (Phred score ${\geq}20$, average BES equaled 620 bp and totaled 23,585,814 bp), after editing sequencing results by eliminating vector sequences, were used initially to compare sequence homology with the known bovine chromosomal DNA sequence by using BLASTN analysis. Blast analysis of the BESs against the NCBI Genome database for Bos taurus (Build 2.1) indicated that the BESs from 13,201 clones matched bovine contig sequences with significant blast hits (E<$e^{-40}$), including 7,075 single-end hits and 6,126 paired-end hits. Finally, a total of 5,105 clones of the Korean cattle BAC clones with paired-end hits, including 4,053 clones from the primary analysis and 1,052 clones from the secondary analysis, were mapped to the bovine chromosome with very high accuracy.

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field

  • Lee, Bo-Young;Lee, Kwang-Nyeong;Lee, Taeheon;Park, Jong-Hyeon;Kim, Su-Mi;Lee, Hyang-Sim;Chung, Dong-Su;Shim, Hang-Sub;Lee, Hak-Kyo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.166-170
    • /
    • 2015
  • Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals and causes severe economic loss and devastating effect on international trade of animal or animal products. Since FMD outbreaks have recently occurred in some Asian countries, it is important to understand the relationship between diverse immunogenomic structures of host animals and the immunity to foot-and-mouth disease virus (FMDV). We performed genome wide association study based on high-density bovine single nucleotide polymorphism (SNP) chip for identifying FMD resistant loci in Holstein cattle. Among 624532 SNP after quality control, we found that 11 SNPs on 3 chromosomes (chr17, 22, and 15) were significantly associated with the trait at the p.adjust <0.05 after PERMORY test. Most significantly associated SNPs were located on chromosome 17, around the genes Myosin XVIIIB and Seizure related 6 homolog (mouse)-like, which were associated with lung cancer. Based on the known function of the genes nearby the significant SNPs, the FMD resistant animals might have ability to improve their innate immune response to FMDV infection.

Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates

  • Kim, Tae-Woon;Jang, Yun-Ho;Jeong, Min Kyu;Seo, Yoonjeong;Park, Chan Ho;Kang, Sinseok;Lee, Young Ju;Choi, Jeong-Soo;Yoon, Soon-Seek;Kim, Jae Myung
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.24.1-24.16
    • /
    • 2021
  • Background: Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods: A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results: We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.

In vitro Development of Interspecies Somatic Cell Nuclear Transfer Embryos Derived from Murine Embryonic Fibroblasts and Bovine Oocytes

  • Yun, J.I.;Koo, B.S.;Yun, S.W.;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1665-1672
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a useful method to preserve endangered species and to study the reprogramming event of a nuclear donor cell by the oocyte. Although several studies of iSCNT using murine cells and bovine oocytes have been reported, the development of murine-bovine iSCNT embryos beyond the 8-cell stage has not been successful. In this paper, we examined the developmental potential of embryos reconstructed with a murine embryonic fibroblast as the nuclear donor and a bovine oocyte as the cytoplasm recipient. The reconstructed embryos were cultured in CZB (murine medium) or CR1aa (bovine medium). In addition, for the development of a murine-bovine iSCNT blastocyst, the antioxidant ${\beta}$-mercaptoethanol (${\beta}ME$) was supplemented to CR1aa medium. Furthermore, to verify the mouse genome activation in murine-bovine iSCNT embryos, RT-PCR analysis of murine Xist was performed. The development of the murine-bovine iSCNT embryos cultured in CR1aa was significantly higher than that in CZB (p<0.05). With respect to the effect of BME on the development of the murine-bovine iSCNT blastocyst, addition of BME produced a significant increase in blastocyst development (p<0.05). Karyotype analysis confirmed that the reconstructed embryos were derived from murine cells (40XX). The Xist gene was gradually increased from the 8-cell stage to the blastocyst stage. This is the first report of blastocyst development of iSCNT embryos derived from murine somatic cells and bovine oocytes. These results demonstrate that bovine cytoplasm can support the development of later stages of a preimplantation embryo from murine-bovine iSCNT.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.