References
- Davis, M. E. and R. C. M. Simmen. 2006. Genetic parameter estimates for serum insulin-like growth factor I concentrations, and body weight and weight gains in Angus beef cattle divergently selected for serum insulin-like growth factor I concentration. J. Anim. Sci. 84:2299-2308. https://doi.org/10.2527/jas.2005-567
- Kim, J. B. and C. Lee. 2000. Historical look at the genetic improvement in Korean cattle. Asian Australas. J. Anim. Sci. 13:1467-1481. https://doi.org/10.5713/ajas.2000.1467
- Kim, Y., J. Ryu, J. Woo, J. B. Kim, C. Y. Kim, and C. Lee. 2011. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Anim. Genet. 42:361-365. https://doi.org/10.1111/j.1365-2052.2010.02156.x
- Kim, Y., J. Ryu, and C. Lee. 2014. Replicated association of single-nucleotide marker on chromosome 6 with bovine yearling weight using a mixed model analysis. Anim. Genet. 45:151-153. https://doi.org/10.1111/age.12110
- La, B., D. Oh, Y. Lee, S. Shin, C. Lee, E. Chung, and J. Yeo. 2013. Association of bovine fatty acid composition with novel missense nucleotide polymorphism in the thyroid hormone-responsive (THRSP) gene. Anim. Genet. 44:118.
-
Lee, C. and E. J. Pollak. 1997. Influence of sire misidentification on sire
${\times}$ year interaction variance and direct-maternal genetic covariance for weaning weight in beef cattle. J. Anim. Sci. 75:2858-2863. - Lee, C., C. P. Van Tassell, and E. J. Pollak. 1997. Estimation of genetic variance and covariance components for weaning weight in Simmental cattle. J. Anim. Sci. 75:325-330.
- Lee, C. and E. J. Pollak. 2002. Genetic antagonism between body weight and milk production in beef cattle. J. Anim. Sci. 80:316-321.
- Lu, D., S. Miller, M. Sargolzaei, M. Kelly, G. Vander Voort, T. Caldwell, Z. Wang, G. Plastow, and S. Moore. 2013. Genomewide association analyses for growth and feed efficiency traits in beef cattle. J. Anim. Sci. 91:3612-3633. https://doi.org/10.2527/jas.2012-5716
- Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle, A. S. Whittemore, M. Boehnke, A. G. Clark, E. E. Eichler, G. Gibson, J. L. Haines, T. F. Mackay, S. A. McCarroll, and P. M. Visscher. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753. https://doi.org/10.1038/nature08494
- Oh, D., Y. Lee, B. La, J. Yeo, E. Chung, Y. Kim, and C. Lee. 2012a. Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN. Mol. Biol. Rep. 39:4083-4090. https://doi.org/10.1007/s11033-011-1190-7
- Oh, D., Y. Lee, C. Lee, E. Chung, and J. Yeo. 2012b. Association of bovine fatty acid composition with missense nucleotide polymorphism in exon7 of peroxisome proliferator-activated receptor gamma gene. Anim. Genet. 43:474.
- Rolfe, K. M., W. M. Snelling, M. K. Nielsen, H. C. Freetly, C. L. Ferrell, and T. G. Jenkins. 2011. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection. J. Anim. Sci. 89:3452-3429. https://doi.org/10.2527/jas.2011-3961
- Ryoo, H. and C. Lee. 2014. Underestimation of heritability using a mixed model with a polygenic covariance structure in a genome-wide association study for complex traits. Eur. J. Hum. Genet. 22:851-854. https://doi.org/10.1038/ejhg.2013.236
- Ryu, J., Y. Kim, C. Kim, J. Kim, and C. Lee. 2012. Association of bovine carcass phenotypes with genes in an adaptive thermogenesis pathway. Mol. Biol. Rep. 39:1441-1445. https://doi.org/10.1007/s11033-011-0880-5
- Shin, S., J. Heo, J. Yeo, C. Lee, and E. Chung. 2012. Genetic association of Phosphodiesterase 1B (PDE1B) with carcass traits in Korean cattle. Mol. Biol. Rep. 39:4869-4874. https://doi.org/10.1007/s11033-011-1280-6
- Snelling, W. M., M. F. Allan, J. W. Keele, L. A. Kuehn, T. McDaneld, T. P. L. Smith, T. S. Sonstegard, R. M. Thallman, and G. L. Bennett. 2010. Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci. 88:837-848. https://doi.org/10.2527/jas.2009-2257
- VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91:4414-4423. https://doi.org/10.3168/jds.2007-0980
- Van Tassell, C. P., T. P. L. Smith, L. K. Matukumalli, J. F. Taylor, R. D. Schnabel, C. T. Lawley, C. D. Haudenschild, S. S. Moore, W. C. Warren, and T. S. Sonstegard. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 5:247-252. https://doi.org/10.1038/nmeth.1185
- Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher. 2011. GCTA: A tool for genome-wide complex trait analysis. The Am. J. Hum. Genet. 88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
- Zuk, O., E. Hechter, S. R. Sunyaev, and E. S. Lander. 2012. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. 109:1193-1198. https://doi.org/10.1073/pnas.1119675109
- Zhang, Z., X. Ding, J. Liu, Q. Zhang, and D. J. de Koning. 2011. Accuracy of genomic prediction using low-density marker panels. J. Dairy Sci. 94:3642-3650. https://doi.org/10.3168/jds.2010-3917
Cited by
- Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages vol.51, pp.1, 2019, https://doi.org/10.1186/s12711-018-0444-4
- Genome‐wide association study for body weight in cattle populations from Siberia vol.50, pp.3, 2019, https://doi.org/10.1111/age.12786
- Performance of pedigree and various forms of marker‐derived relationship coefficients in genomic prediction and their correlations vol.137, pp.5, 2020, https://doi.org/10.1111/jbg.12467