• Title/Summary/Keyword: Boussinesq Equation

Search Result 92, Processing Time 0.037 seconds

Earth Pressure Acting on the Model Wall due to Repeating Surcharge Load(I) (반복상재하중에 의해 모형벽체에 작용하는 토압(I))

  • Chon, Yong-Baek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2002
  • This paper intends to investigate such effects through experiments. The contents of the investigation are effects of position of repeated loading and unloading, passing frequency. For the purpose of the investigation an experimental load-deflection system is developed and the system is possible to measure deflection of the wall and earth pressure due to different size of strip loading and cyclic loading. The findings from the experiments are as follows: 1. As repeated loading approaches to the wall, the measured horizontal residual earth pressure agrees well with Rowe's empirical formula, while as the loading is far from the wall the earth pressure consists with Boussinesq's and Spangler's formulas. Also it is found that below 0.6m depth from ground surface the effects of repeated loading can be nearly neglected. 2. From comparison analyses of earth pressure theories and experimental results, a reagression equation is suggested herein, and earth pressure at any depth and maximum earth pressure due to cyclic loading can be estimated from the equation.

  • PDF

Analysis of Turbulent Flow in a Square Duct with a $180^{\circ}$ Bend ($180^{\circ}$곡관을 갖는 정사각 단면 덕트에서의 란류류동 해석)

  • Launder, B. E.;Kim, Myung-Ho;Moon, Chan;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.607-621
    • /
    • 1988
  • The paper describes the incorporation of an algebraic stress model(ASM) of turbulence in to a semi-elliptic solution procedure for the prediction of turbulent flow in passage around a 180.deg. square sectioned bend. The numerical results are obtained from a finite-volume discretization with applications of QUICK scheme and full find grid system without PSL approximation. Results show that the better agreements in velocity profiles with experimental data than those from k, $\varepsilon$ equation model with wall function and PSL are obtained. Predictions of Reynolds stresses also show good agreements with the experimental data.

The Characteristic of Wave Propagation in the Irregular Wave-current field (불규칙파.흐름 공존장에서 파랑변동특성)

  • Lee, Chang-Ho;Kim, Heon-Tae;Ryu, Cheong-Ro;Lee, In-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.128-134
    • /
    • 2003
  • Numerical study on interactions of waves and currents has considerable practical interests in coastal and ocean engineering. And wave-current interactions strongly influence wave characteristics, current profiles, and forces on offshore structures. Presence of currents affects wave properties such as wave height and wave profiles. Furthermore, in case of the irregular waves, it is more complicated problem. The propose of present study, using the one-dimensional wave-current numerical model is based on the extended Boussinesq equation(Madsen, 1991) and an alternative form of wave-current dispersion relation(Mohiuddin, 1999, 2000) including wave action concept, is to simulate wave propagation in a current field including the irregular waves and discuss applicability of the model in a wave-current field.

  • PDF

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes (유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석)

  • Myong, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

Depth-Integrated Models for Turbulent Flow and Transport by Long Wave and Current (흐름과 장파에 의해 발생하는 난류 및 수송모의를 위한 수심적분형 모형)

  • Kim, Dae-Hong;Lynett, Patrick
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.546-550
    • /
    • 2010
  • 흐름과 장파에 의하여 발생되는 난류의 subgrid scale mixing effects를 고려할 수 있는 수심적분형 모형(depth-integrated model)을 제시하였다. 완전비선형의 수심적분형 모형은 약분산(weakly dispersive) 환경에서 흐름의 회전성(rotational)을 고려하도록 perturbation approach를 이용하여 유도되었다. 동일한 방법을 이용하여 수심적분형 이송확산방정식(depth-integrated scalar transport equation)을 유도하였다. 방정식은 4차정확도의 유한체적기법을 이용하여 해석하였으며, 다양한 혼합양상을 보이는 흐름에 대한 수치모의를 수행하였다.

  • PDF

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Lost measurement sensor data estimation technology based on trend analysis of adjacent sensors using Boussinesq equation (부시네스크 식을 이용한 인접 센서 데이터 추세 분석 기반 손망실 계측 센서 데이터 추정 기법)

  • Choi, Sang-Il;Shim, Seungbo;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.221-232
    • /
    • 2021
  • Most of measurement sensors used for maintenance are continuously exposed to various environmental factors such as transportation and rainfall, so the possibility of breakage increases gradually. The maintenance measurement sensor of domestic subway tunnel shows an average of 14.2% to 14.8% of loss rate after about 5 to 6 years from installation, and it shows a sensor loss rate of about 13.9% in case of foreign countries. As a result, it can be seen that an average of 15% of maintenance measurement sensors at home and abroad cannot send measuring values after 5~6 years. In order to continuously collect accurate data, measurement data must be recovered by performing repair or replacement of the sensor, but some lost measurement sensors are buried after installation. So, there are many difficulties in repairing sensors, including cost and time. Therefore, in this paper, we propose lost measurement sensor data estimation technology based on data trend analysis using adjacent sensors.